EE 131A Winter 2018 Midterm

Probability Tuesday, February 12, 2018
Iustructor: Lara Dolecek

Maximum score is 100 points. You have 110 minutes

to complete the exam. Please show your work.
Good luck!

Your Name:

Your ID Number:

Name of person on your left:

Name of person on your right:

| Problem | Score | Possible |
1 0 10
2 [0 10
3 (3 15
4 14 15
d K 10
6 [0 10
7 & 15
8 (2 15

[ Total | 97 | 100
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1. (10 pts) Show that if P(A) > 0, then
P(AN B|A) > P(AN BJAU B)
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2. (146 pts) Let X be a random variable that takes integer values from 0 to 9 with equal
probability 1_16'

(a) Find the PMF of the random variable ¥ = X mod 3.
(b) Find the PMF of the random variable Y = 5 mod (X + 1).
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/ 3 (T+8Dts)

(a) A police department in a small city consists of 10 officers. If the department
policv is to have 5 of the officers patrolling the streets, 2 of the officers working
full time at the station, and 3 of the officers on reserve at the station, how many
different divisions of the 10 officers into the 3 groups are possible?

(b) A 5-card hand is dealt from a well-shuffled deck of 52 playing cards. What is the
probability that the hand containg4t least one card from each of the four suits?
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4. (15 pts) True or False.

Circling the correct answer is worth +3 points, circling the incorrect answer
is worth —1 points. Not circling either is worth 0 points.

(a) The expected value of a sum of random variables is equal to the sum of the
expected values of each random variable.

TRUE FALSE

(b) Discrete variables have means that are always integer values.

TRUE .

(c) The probability of the success of a trial or
distribution depends on the trial or obse

TRUE

(d) If events X and Y are inde
TRUE

servation for a binomial probability
‘vation that came before it.

gendent. then they are also mutually exclusive.

(e) If events X~andY are independent, Var[X] = a, and Var[Y] = b, then Var[a +
bl = Var[X] + Var[Y] is always true.

TRUE VAR(ac 1) =O
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5. (545 pts)

(a) Prove the memoryless property of geometric random variables.

(b) The number of years a radio functions is exponentially distributed with parameter
A= %. If David bought a functional radio which has been used for 8 years, what
is the probability that it will be working after an additional 8 years?
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6. (3+344 pts) Suppose that the continuous random variable X has pdf

f) = {8(1 —2?) —1<z2<1,

otherwise.

(a) Find ¢ such that the pdf is valid.
(b) Find the expected value of X.

(c) Find the variance of X.
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7. (7+8 pts)
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(a) Find the characteristic function of the uniform continuous random variabl

tributed uniformly on the inter val [—b,b].

(b) Find the mean and variance of X by applying the moment theorem.
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8. (6+5+4 pts) Consider a biased coin with p being the probability of heads. We flip the
coin until r tails have appeared, and then stop flipping the coin. Let X be the random
variable denoting the number of heads in this experiment.

(a) Find the PMF of X.
(b) Find the expected value of X.

(c¢) Find the variance of X.
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