

University of California, Los Angeles Henry Samueli School of Engineering and Applied Science Department of Electrical Engineering

D. Marković Thu, Feb 9, 4:00 – 5:50 pm

EE115C: WINTER 2017—MIDTERM

Please write answers in the box provided.

Answers elsewhere will not be graded.

You have 110 minutes.

The test is planned so that you roughly spend 1.5 minutes per point + 20 minutes to check your answers. Budget your time properly. If you get stuck, move on…

Good luck!

- **Problem 3 _____/16**
- **Problem 4 _____/15**

Problem 1: MOS Transistor – Regions of Operation (10 pts)

Determine the V_x ranges for different regions of operation to occur. If a region of operation is not possible, demark the case with DNE (does not exist).

Parameters: 0.5V $|V_{TP}| = 0.2 V$ $|V_{DSATP}| = 0.2 V$ V_x range: -1 $V \leq V_x \leq 1$ V 0.1V $V_{\rm X}$ $drain : 11 < 01$ Source: PMOS is off until $V_x > 0.7V \Rightarrow S$ at $@Vx=0.9V \Rightarrow Vsat$ drain: PMOS is off
Linear does not exist (DNE), because V_{DS}>V_{DSAT,}VGT

Problem 2: VTC and Energy (15 pts)

The following circuit is a "Digital Non-Inverting Buffer".

(a) Compute V_{IL} , V_{IH} , V_{OL} , V_{OH} , NM_{L} , and NM_{H} . **(6 pts)** $B\mathcal{U}_{d}$ fer = $V_{ol} = f(V_{ol})$, $V_{ol} = f(V_{ol}$ VIH, VIL determined from unit slope (45° line)

Graphically
$$
\Rightarrow
$$
 Vol = VI_{IL} = 0.3V
 $U_{IH} = 0.6V, Vol = 0.9V$

$$
NM_{L} = V_{IL} - V_{OL} = O
$$

$$
NM_{H} = V_{OH} - V_{IH} = O.3V
$$

Figure 2(b): One-stage digital buffer with $C_L = 100$ fF

- (i) Find the energy dissipated as heat during the first 0V to 1V input (i), **Eheat-(i)**.
- (ii) Then, after the output reaches its final value, a 1V to 0V step is applied to the input (ii). Find the energy dissipated as heat, **Eheat-(ii)**.
- (iii) A second 0V to 1V step follows. Find again the energy dissipated as heat, **Eheat-(iii)**.

(i) Vout : 0
$$
\rightarrow
$$
 0.9V
\n
$$
E_{heat} = E_{0\rightarrow 1} - E_{c} = C_{L}V_{bo}V_{Swing} - \frac{1}{2}C_{L}V_{final}^{2} = 4954J
$$
\n
$$
= 4954J
$$
\n
$$
= 6.9V
$$

$$
(ii) V_{out}: 0.9V \rightarrow 0.2V
$$

Eheat = $\Delta E_c = \frac{1}{2} (CV_{init}^2 - \frac{1}{2}CV_{tinal}^2 = 38.5 f)$
 $(0.9V)^2$ $(0.2V)^2$

$$
(iii) \text{ V}_{\text{out}} : 0.2v \to 0.9v
$$

End = E_{0→1} - \Delta E_c = C_L V₀₀ V₁ using - 38.5 fJ = 31.5 fJ
0.7v
0.7v

Problem 3: CMOS Logic & Delay (16 pts)

(a) Design $F = \overline{A + BC + D}$ in Static CMOS. Draw the schematic and size all the transistors such that the worst-case delay is equal to that of a unit-sized inverter $(W_P: W_N = 2:1)$. (8 pts)

(b) Calculate the worst-case and the best-case tpLH and tpHL for a step input. Assume that the on resistance of a unit-sized 2:1 inverter is R_{on} , and that the drain capacitance of a unit-sized transistor is CD. Ignore drain capacitance in the internal stacked nodes. **(8 pts)**

 $t_{p} = 0.69$ T

Problem 4: Power and Energy (15 pts)

(a) What logic function F is implemented by this circuit (inputs: A, B, and C)? **(2 pts)**

$$
F = \qquad A + B \bigg) \cdot \overline{C}
$$

(b) Assume the probably of logic 1 for inputs: $p(A = 1) = 0.3$, $p(B = 1) = 0.25$, $p(C = 1) = 0.3$, capacitances $C_Y = 10$ fF, $C_F = 40$ fF, frequency $f = 200$ MHz, $V_{DD} = 1$ V, threshold voltage $V_{TN} = 0.2$ V and $V_{TP} = -0.3$ V. Calculate the average switching power P_{sw} of the circuit (input C is a full-swing signal). Calculate all results with 2 digits of precision. When defining logic "0" values of F, assume that F was previously at logic "1". **(10 pts)**

$$
\begin{array}{lll}\nA & B & Y & P(Y=0) = p(A=0) \cdot p(g=0) \\
0 & 0 & = (1-0.3) \cdot (1-0.25) = 0.53 \\
0 & 1 & p(Y=1) = 1 - p(Y=0) = 0.47 \\
1 & 1 & \sqrt{Y(0-1)} = p(Y=0) \cdot p(Y=1) = 0.25 \\
\end{array}
$$
\n
$$
P_{SW,Y} = \sqrt{Y(0-1)} \cdot f \cdot C_1 \cdot V_{DD}^2 = 0.5 \mu W
$$
\n
$$
P(Y=1) = 0.47
$$
\n
$$
P(Y=1) = 0.47
$$
\n
$$
P_{SW,Y} = 0.5 \mu W
$$

$$
\gamma C F
$$
\n
$$
\gamma C F
$$
\n
$$
\gamma (k_{\text{TP}}) \qquad \gamma (k_{\text{TP}}) \qquad \gamma (k_{\text{TP}}) \qquad \gamma (k_{\text{TP}}) \cdot \gamma (k_{\text{TP}}) = 0.329
$$
\n
$$
\gamma (k_{\text{TP}}) \qquad \gamma (k_{\text{TP}}) \qquad \gamma (k_{\text{TP}}) \cdot \gamma (k_{\text{TP}}) = 0.329
$$
\n
$$
\gamma (k_{\text{TP}}) \qquad \gamma (k_{\text{TP}}
$$

 0.47

 0.33

(c) Calculate the heat energy dissipation for one cycle (charge + discharge) associated with C_Y and CF. **(3 pts)**

$$
E_{y} = C_{y} \cdot V_{00}^{2} = 10 \text{ J}
$$
\n
$$
E_{F} = C_{F} \cdot V_{00} \cdot (V_{00} - V_{Tf}) \cdot (0^{4} - 1) = 28 \text{ J} = E_{F}^{4}
$$
\n
$$
or C_{F} \cdot V_{00}^{2} \qquad (0 \rightarrow 1) = 40 \text{ J} = E_{F}
$$

Extra credit: what is the average heat energy dissipation associated with C_F? (3 pts)

Eheat = $\frac{\epsilon_{f}^{*}(0.11 + \epsilon_{F} \cdot 0.1)}{0.21}$ = 33.7 f J

$$
E_{heat,avg} (C_F) = 33.7 \pm 5
$$