

University of California, Los Angeles Henry Samueli School of Engineering and Applied Science Department of Electrical Engineering

D. Marković

Thu, Feb 9, 4:00 – 5:50 pm

EE115C: WINTER 2017-MIDTERM

NAME	SOLVTION Last First	
SID		

Please write answers in the box provided.

Answers elsewhere will not be graded.

You have 110 minutes.

The test is planned so that you roughly spend 1.5 minutes per point + 20 minutes to check your answers. Budget your time properly. If you get stuck, move on...

Good luck!

Problem 1	/10
Problem 2	/15

- Problem 3 ____/16
- Problem 4 ____/15

Total (56)

Problem 1: MOS Transistor – Regions of Operation (10 pts)

Determine the V_x ranges for different regions of operation to occur. If a region of operation is not possible, demark the case with DNE (does not exist).

0.5V 0.1V V_X V_X V_X V_X V_X V_X range: $-1V \le V_X \le 1V$ $V_X = 0.1V$ $V_X < 0.1V$ $V_X < 0.1V$ Source: PMOS is off until $V_X > 0.7V \Rightarrow Sat$ $@V_X = 0.9V \Rightarrow VSat$ drain: PMOS is off Linear does not exist (DNE), because $V_{DS} > V_{DSAT}, V_{GT}$ when PMOS is on

Cuttoff	Linear	Saturation	Velocity - Saturation
-IV ≤ V × < 0.7 V	DNE	٥.٦٧≤ ٧x < 0.9٧	0.9V < V × < 1V

Problem 2: VTC and Energy

The following circuit is a "Digital Non-Inverting Buffer".

(a) Compute V_{IL} , V_{IH} , V_{OL} , V_{OH} , NM_L , and NM_H . (6 pts) Buffer => $V_{0L} = f(V_{0L})$, $V_{0H} = f(V_{0H})$ V_{1H} , V_{1L} determined from unit slope (45° line)

Graphically =)
$$V_{0L} = V_{1L} = 0.3V$$

 $V_{1H} = 0.6V$, $V_{0H} = 0.9V$

$$NM_{L} = V_{1L} - V_{0L} = 0$$

 $NMH = V_{0H} - V_{1H} = 0.3V$

VIL =	0.3V
VIH =	0.6V
Vol =	0.3V
Von =	0.9V
NML =	0
NM _H =	0.3V

Figure 2(b): One-stage digital buffer with $C_L = 100 \text{fF}$

- (i) Find the energy dissipated as heat during the first 0V to 1V input (i), Eheat-(i).
- (ii) Then, after the output reaches its final value, a 1V to 0V step is applied to the input (ii).Find the <u>energy dissipated as heat</u>, E_{heat-(ii)}.
- (iii) A second OV to 1V step follows. Find again the energy dissipated as heat, Eheat-(iii).

(i) Vout:
$$0 \rightarrow 0.9V$$

Eheat = $E_{0\rightarrow 1} - E_c = C_L V_{00} \cdot V_{swing} - \frac{1}{2} C_L V_{final} = 495.57$
 $\hat{0.9V}$ $(\hat{0.9V})^2$

(ii) Vout: 0.9V -> 0.2V
Eheat =
$$\Delta E_c = \frac{1}{2} (\sqrt{\frac{2}{100}} + \frac{1$$

(ini) Vout :
$$0.2V \rightarrow 0.9V$$

Eheat = $e_{0\rightarrow 1} - \Delta E_c = C_1 \cdot V_{00} \cdot V_{00} \cdot V_{00} \cdot V_{00} = 38.5 f = 31.5 f = 31.$

Eheat-(i) =	495f)
Eheat-(ii) =	38.5 f J
Eheat-(iii) =	31.5 f]

Problem 3: CMOS Logic & Delay

(a) Design $F = \overline{A + BC + D}$ in Static CMOS. Draw the schematic and size all the transistors such that the worst-case delay is equal to that of a unit-sized inverter (W_P:W_N = 2:1). (8 pts)

(b) Calculate the worst-case and the best-case t_{pLH} and t_{pHL} for a step input. Assume that the on resistance of a unit-sized 2:1 inverter is R_{on}, and that the drain capacitance of a unit-sized transistor is C_D. Ignore drain capacitance in the internal stacked nodes. (8 pts)

tp=0.69 T

Delay	t _{pLH}	t _{pHL}
Worst-case	6.9 Ron Co	6 9 Ron Co
Best-case	5.75 Ron. Co	2.3 Ron. Co

Problem 4: Power and Energy (15 pts)

(a) What logic function F is implemented by this circuit (inputs: A, B, and C)? (2 pts)

$$F = A + B$$
. C

(b) Assume the probably of logic 1 for inputs: p(A = 1) = 0.3, p(B = 1) = 0.25, p(C = 1) = 0.3, capacitances $C_{\rm Y} = 10$ fF, $C_{\rm F} = 40$ fF, frequency f = 200 MHz, $V_{\rm DD} = 1$ V, threshold voltage $V_{\rm TN} = 0.2$ V and $V_{\rm TP} = -0.3$ V. Calculate the average switching power $P_{\rm sw}$ of the circuit (input C is a full-swing signal). Calculate all results with 2 digits of precision. When defining logic "0" values of F, assume that F was previously at logic "1". (**10 pts**)

(c) Calculate the heat energy dissipation for one cycle (charge + discharge) associated with C_Y and C_F . (3 pts)

$$E_{\gamma} = C_{\gamma} \cdot V_{00}^{2} = 10 \text{ fJ}$$

$$E_{F} = C_{F} \cdot V_{00} \cdot (V_{00} - |V_{TP}|) \quad (0^{*} \rightarrow 1) = 28 \text{ fJ} = E_{F}^{*}$$
or $C_{F} \cdot V_{00}^{2}$

$$(0 \rightarrow 1) = 40 \text{ fJ} = E_{F}$$

Node Y (C _Y)	$E_{heat} = 10 \pm 7$
Node F (C _F)	$E_{heat} = 2847/4047$

Extra credit: what is the average heat energy dissipation associated with C_F ? (3 pts)

Eheat = $\frac{E_{f}^{*} \cdot 0.11 + E_{F} \cdot 0.1}{0.21} = 33.7 \text{fJ}$

$$E_{\text{heat,avg}}(C_F) = 33.7 \text{f}$$