

University of California, Los Angeles Henry Samueli School of Engineering and Applied Science **Department of Electrical Engineering**

D. Marković

Tue, Feb 14, 8:00 - 9:50 am

EE115C: WINTER 2012-MIDTERM

NAME	SOLUTION Last	First
SID		

Please write answers in the box provided.

Answers elsewhere will not be graded.

Problem 1	/10
-----------	-----

Problem 2 /10

Problem 4 /15

Problem 1: MOS Transistor – Regions of Operation (10 pts)

Determine the V_x ranges for different regions of operation to occur. If a region of operation is not possible, demark the case with DNE (does not exist).

Cuttoff	Linear	Saturation	Velocity - Saturation
-0.3V & V × & I V	DNE	$-0.6V \le V_X \le -0.3V$	$-1V \leq V_{X} \leq -0.6V$

Problem 2: VTC (10 pts)

This figure shows the voltage transfer characteristic (VTC) of a standard CMOS inverter. Note that VTC is approximated with a straight line between $V_{in} = V_{IL}$ and $V_{in} = V_{IH}$.

Parameters: $V_{DD} = 1 V$, $V_{OH} = 1 V$, $V_{OL} = 0 V$, $V_M = 0.5 V$.

(a) Determine VIL and VIH given that the gain around the V_M point is g = -2. (2 pts)

$$V_{1L} = V_{M} - \frac{V_{0H} - V_{M}}{1 g_{1}} = 0.25V$$

$$V_{1H} = V_{1L} + \frac{V_{0H} - V_{0L}}{1 g_{1}} = 0.75V$$

V _{IL} =	0.25V
V _{IH} =	0.75V

- (b) Determine V_{TN} and V_{TP} assuming that the NMOS transistor is strictly off for $V_{GS} < V_{TN}$ and the PMOS transistor is strictly off for $V_{GS} > V_{TP}$. (2 pts)
 - VTN @ VIL VTP @ VDD-VIH (negative, pmos)

$V_{\rm TN} = 0.25$	V
$V_{\rm TP} = -0.2$	5V

(c) Determine the High and Low noise margins of the inverter. (2 pts)

$$NM_{H} = V_{0H} - V_{1H} = 0.25V$$

 $NM_{L} = V_{1L} - V_{0L} = 0.25V$

$NM_{H} =$	0.25V
NM _L =	0.25V

(d) Suppose V_{DD} is reduced to 0.4 V and also assume that $V_{TN} = |V_{TP}| = 0.3$ V. Sketch the new VTC with all relevant voltage points marked on the graph. Also mark where NMOS and PMOS devices are ON. (4 pts)

Problem 3: Power and Energy (15 pts)

(a) What logic function F is implemented by this circuit (inputs: A, B, and C)? (2 pts)

$$F = (A + B) \cdot C$$

(b) Assume the probably of logic 1 for inputs: p(A = 1) = 0.3, p(B = 1) = 0.25, p(C = 1) = 0.3, capacitances $C_{Y} = 10$ fF, $C_{F} = 40$ fF, frequency f = 200 MHz, $V_{DD} = 1$ V, threshold voltage $V_{TN} = 0.2$ V and $V_{TP} = -0.3$ V. Calculate the average switching power P_{sw} of the circuit (input C is a full swing signal). Calculate all results with 2 digits of precision. (10 pts)

$$\begin{array}{c|cccc} A & B & Y & P(Y=0) = p(A=0) \cdot p(B=0) \\ \hline 0 & 0 & 0 & 0 & = (1-0.3) \cdot (1-0.25) = 0.53 \\ \hline 1 & 0 & 1 & P(Y=1) = 1 - p(Y=0) = 0.47 \\ \hline 1 & 1 & 1 & P(Y=1) = 0.25 \\ \hline Y_{Y:0\to1} = p(Y=0) \cdot p(Y=1) = 0.25 \\ \hline P_{SW,Y} = Q_{Y:0\to1} \cdot f \cdot C_Y \cdot V_{00}^2 = 0.5 \ \mu W & p(Y=1) = 0.47 \\ \hline \alpha_{Y:0\to1} = 0.25 \\ \hline P_{SW,Y} = 0.50 \ \mu W \end{array}$$

$$p(F = 1) = 0.14$$

$$\alpha_{F:0\to1} = 0.12 \begin{pmatrix} 0.12 \\ 0.02 \end{pmatrix}$$

$$P_{sw,F} = 0.53 \text{ MW}$$

(c) Calculate the heat energy dissipation for one cycle (charge + discharge) associated with $C_{\rm Y}$ and $C_{\rm F}$. (3 pts)

$$E_Y = C_Y \cdot V_{00}^2 = [0 f]$$

$$E_F = C_F \cdot V_{00} \cdot (V_{00} - V_{TN}) = 32 f^2 \qquad (0 \rightarrow 1)$$

$$C_F \cdot V_{00} \cdot (V_{00} - V_{TN} - |V_{TP}|) = 20 f^2 \qquad (0^* \rightarrow 1) 5x \text{ more frequent}$$

Node Y (C _Y)	$E_{heat} = [0 f]$
Node F (C _F)	$E_{heat} = 32 f^{3} / 20 f^{3}$

Extra credit: what is the average heat energy dissipation associated with C_F ? (3 pts)

Average Eheat =
$$\frac{5 \cdot 20fJ + 1 \cdot 32fJ}{6} = 22fJ$$

Problem 4: Logical Effort (15 pts)

(a) Draw the schematic of the 3-input NAND gate, and size all the transistors such that the worst-case delay is equal to that of a unit-sized inverter ($W_P:W_N = 2:1$). Find the logical effort of the 3-input NAND gate. (3 pts)

(b) For the logic path from In to Out shown below, find the *path* logical effort, *path* branching effort, *path* electrical effort, and the total *path* effort. What is the optimum effort per stage f_{opt} for minimizing delay? (7 pts)

$$G = 1 \times \frac{4}{3} \times \frac{5}{3} \times 1 \times \frac{5}{3} \times \frac{4}{3} = \frac{400}{81} = 4.94$$

$$B = 1 \times 2 \times 3 \times 1 \times 1 \times 1 = 6$$

$$H = \frac{100}{1} = 100$$

$$F = 6 \times B \times H = 2963$$

foot = $6\sqrt{F} = 3.79$

G =	$\frac{400}{81} = 4.94$
B =	6
H =	100
F =	2963
$f_{opt} =$	3.79

5/3

(c) Find scaling factors (x, y, z, w, v) in the path in order to minimize delay (circuit drawing repeated for convenience). (5 pts)

From Out to In:

$$V = \frac{4}{3} \frac{100}{3.79} = 35.2$$

$$W = \frac{5}{3} \frac{35.2}{3.79} = 15.5$$

$$Z = 1 \frac{15.5}{3.79} = 4.09$$

$$Y = \frac{5}{3} \times 3 \times \frac{4.09}{3.79} = 5.4$$

$$X = \frac{4}{3} \times 2 \times \frac{5.4}{3.79} = 3.79 \quad (= \text{fopt})$$

x =	3.8
y =	5.4
z =	4.1
w =	15,5
v =	35.2