ECE115B

Final Exam

Winter 2020

Name: _____

Total of 3 questions, 3 hours.

P1 (30)	
P2 (40)	
P3 (30)	
Total (100)	

- 1. In the amplifier below, $V_A = \infty$ for both transistors, and ignore all the internal capacitances. Assume that both transistors are in forward active mode, with identical bias currents (all the bias details not shown).
 - a. Find the low frequency gain and input impedance.
 - b. Determine the number of poles and zeros.
 - c. Find the location of zero(s) intuitively
 - d. Using Miller approximation, determine the location of the poles. Does the amplifier have a dominant pole? Is Miller approximation valid in this case? Assume C_F and C_L are comparable.
 - e. Find the exact transfer function.

- 2. In the feedback amplifier below, assume that all the transistors are in saturation, and ignore r_o for all transistors (except for part c). Using feedback techniques:
 - a. Calculate the loop gain, and consequently the low frequency transconductance gain $(\frac{i_o}{v_s})$.
 - b. Find the resistance looking into the gate of $M_2(R_{i2})$.
 - c. Find the output resistance R_o at the drain of M₃ as shown. Do not ignore the r_o of M₃, but you can still use the loop gain from part a.

- 3. Consider the amplifier shown below, where $\beta = 100mA/V^2$, and $\lambda = 0.2V^{-1}$ for all the transistors. Assume all the transistors are in saturation.
 - a. Calculate the DC current and small signal parameters of the transistors.
 - b. Estimate the low frequency gain $\left(\frac{v_o}{v_i}\right)$ of the circuit.
 - c. Find the poles of amplifier assuming that $C_1 = 5pF$, and $C_2 = 0.5pF$ are the only capacitors in the circuit.
 - d. Draw the Bode plots of the amplifier gain and phase.
 - e. Find the phase margin of the amplifier if it were to be used in a unity feedback.
 - f. Calculate C_1 required to guarantee a phase margin of 45° for the amplifier with unity feedback.

