EE 115A Winter 2011 Midterm Exam Feb 7th 2010

Instructions: This exam consists of five problems, blank sheets for the solutions and additional blank sheets. You have 1 hour 45 minutes to finish your exam.

Name:

UID:

Left student's name:

Right student's name:

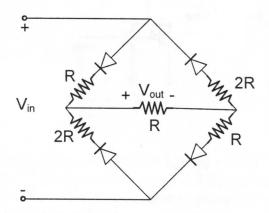
Problem1: |8 /20

Problem2: 20/30

Problem3: 20/20

Problem4: 30/30

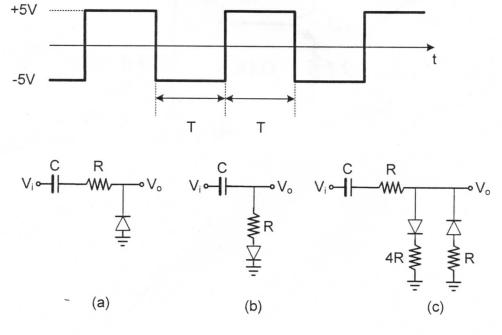
Problem5 (Bonus): 0 /20


Total: 88

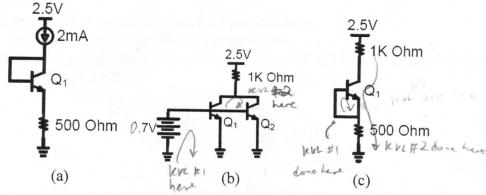
Problem 1 (20)

For the circuit in the following figure, please plot the input – output characteristics (Vout vs. Vin) for -5V < Vin < 5V. Please find the important break-points and the slope (show steps), and label them on the waveform.

- (a) Assume ideal diodes.
- (b) Assume constant-voltage diode model ($V_{D,on} = 0.7V$).


(10 + 10 = 20 points)

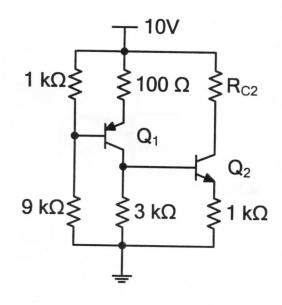
Problem 2 (30)


For the circuits in the following figure, each utilizes an ideal diode. Please sketch the output in the steady-state for the shown input. Label the most positive and the most negative output levels and mathematically justify your sketch. Please provide two sets of outputs for a) RC << T, b) $T < RC < \infty$.

$$(15 + 15 = 30 \text{ points})$$

Problem 3 (20)

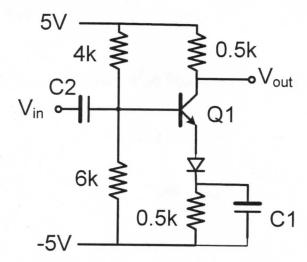
Assume $I_s=8*10^{-16}$, $\beta=100$, $VA=\infty$, $V_{CE,SAT}=0.2$ V. Find I_C , V_{BE} , V_{CE} and identify the region of operation.

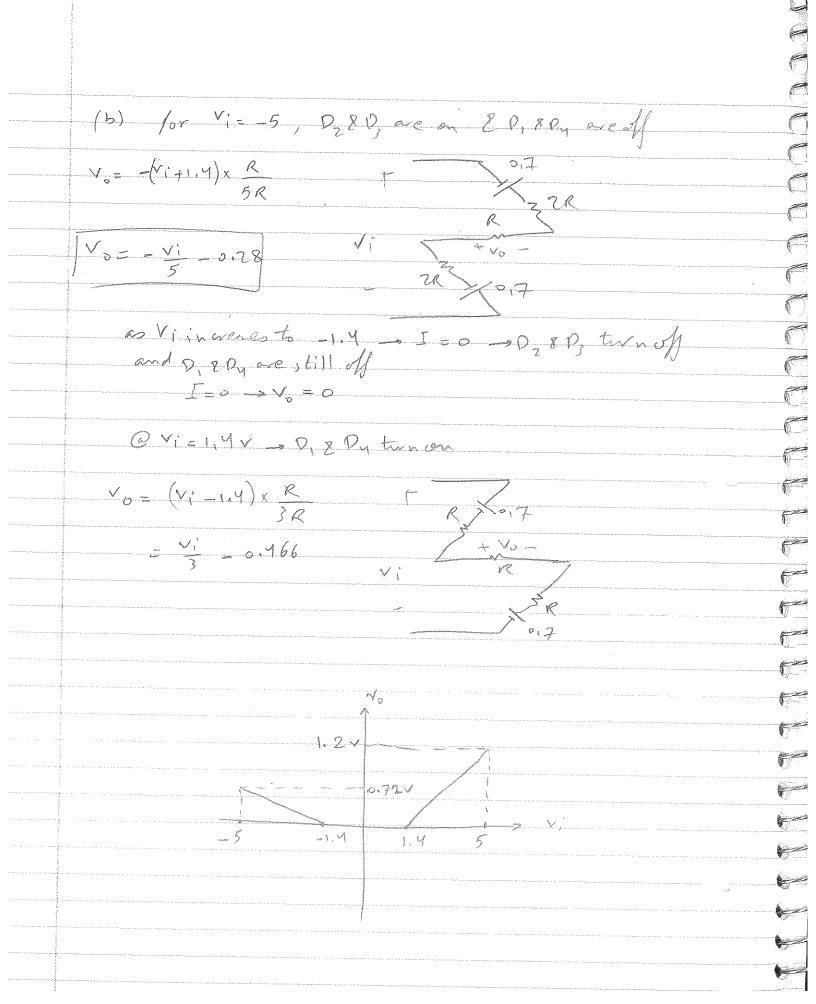


Problem 4 (30)

For the amplifier circuit shown below, assume that $I_S(pnp) = 5*10^{-16}$, $\beta(pnp) = 100$, $V_A(pnp) = \infty$, $I_S(npn) = 5*10^{-16}$, $\beta(npn) = 80$, $V_{CE,SAT} = 0.2$ V, and $V_A(npn) = \infty$.

(a) For $R_{C2} = 2K\Omega$, solve for the voltages of all three terminals of both transistors Q_1 and Q_2 (V_E , V_C , and V_B for both the npn and pnp).


(b) For what values of R_{C2} will the device Q_2 be in saturation region? *You may neglect I_B with respect to I_R .


Problem 5 (Bonus, 20 total)

For the circuit in the following figure, Is=5*10-16A, β =100, $V_{CE}(sat)$ = 0.2V, $V_{D,on}$ =0.7V and V_A = ∞ , C2= ∞ .

- a) Calculate the small signal parameter for the transistor.
- b) Draw the small signal model for the circuit shown.
- c) Calculate the input and output impedance (Rin and Rout) and voltage gain when C1=0; and when $C1=\infty$.

Millerm (P) a) for xi = 5 Yo = V; x R = -V!
5 R 5 as NI increases, Q Vi=0 289 true of 80,80, tunion

Cup Count discharge cap acts like a wine (This page is not entirely correct, but the professor did not give solutions for #2) when vin 20, diste is a wore/shed : no wolldage when Vin 15 26 yout when vin 40, can creges up, and is VIN monus snall chase on Vontres Other since grounded when him so, whent Evin + Vap = 575-100 @ INF When Mn co, no correct Avs. When vin es, and current, so no theye or cap, who my rus When vin >0, Vont = vin by RVL car changes up When Vin <0, Vint = R in = 1 When My 20, wout = AR hm = 9 Vn value 1 Smile 2 since Kesister AR = R

[] [+ I = 2m A = I = 500 q Les XIE BILE 1198 mA -> V15 = 45 h = 0.742 v & VCE= VBE= 0.742V Transistor in (Active) (b) VBE, VBE2 0.7V Ic= 1(2 = 15 68E/V 07-15-16-2 = 0.394 mA -> VGE = 2.5 - 1k x 2 x 0.39 4 mA = 1.712 V = VGE? Q, & Q, ace in (Active) VBE = 0 - 1 = 0 as BE junction Ne= 2.54, Ye = 0 ander Tigy I Som - Ch junction is in year enge -> transister is (off)

Assume
$$I_B < < (\frac{10V}{10KL} = 1mA)$$
 , $(5)I \Rightarrow I_B = I_C = \beta I_B$

(C1)

 $V_{B_1} = I_{O} \times 9 = 9V$
 $V_{B_2} = I_{O} \times 9 = 9V$
 $V_{B_3} = I_{O} \times 9 = 9V$
 $V_{B_4} = I_{O} \times 9 = 9V$
 $V_{B_5} =$

assumption

KVL2: Va = 712V = VBEZ + IE X1000 7.35 VBEz + 1000 Is, x e BEZ/VT = VBEZ + 5×10-13 eVBEZ/VT VBG120,7V => (RHS= 0,95 VB61=0.754 PHSZ 2,44 VBG220.73V RHS= 1,5/V VBE = 0.72V => PHS = 1.75 V # VBE = 0.785 V RUS = 7.26 · VB 7.35V, VEZ = 7.38-0.785= 6.57V = I Ez = 6.57 V = 6.57 mA $I_{E_2} = \frac{1}{1k}$ $I_{C_2} = \frac{10 - I_{C_1} R_{C_2}}{10 - I_{C_1} R_{C_2}}$ = 10 - 0.96 = 3.03 VCheck! Ver > VB2 => Active Region Checke: IB2 = IC2 = 6 MA L< (IC1 = 400 MA)

Thede? $L_{B_2} = L_{C_2} = 6 \text{ MB} / (L_{C_1} = 400 \text{ MA})$ (b) Edg of $Sat. \rightarrow V_{C_2} = V_{B_2} = 7.36$ $R_{C_2} = \frac{10.135}{6.43mt} = 0.4 + KS2$ [5]