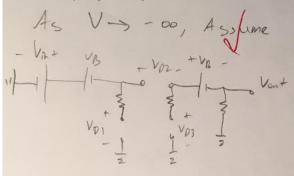
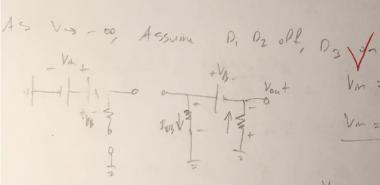

Name:		
	Student ID:	Page: 2/8

1- True or False?


1	, T	In an NPN BJT the emitter is N+ to ensure the BE current is dominated by free electrons.
V	F	In a PNP BJT the base layer is thin to ensure the rate of thermal ionization is sufficiently high.
1	F	N-type semiconductors are made by adding a dopant element from group V of the periodic table to a crystalline material of atoms from group III.
V	F	In a PN junction the width of the depletion region is larger on the P side.
/	T	A semiconductor becomes more conductive as the temperatures rises above the room temperature.


(10 points)

2- Find V_{out} versus V_{in} , as V_{in} varies from $-\infty$ to $+\infty$, if the diodes have a turn on voltage of V_{Don} =0 and are otherwise ideal (Use a piece-wise linear model). V_B is larger than 0.

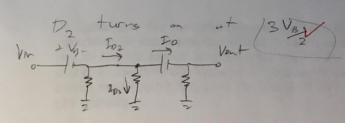
(40 points)

$$V_B = E_{P3}R + E_{D3}R$$
 $V_B = 2E_{D3}R$, $E_{D3}R = \frac{V_B}{2}$

Vm - VB - V0 = V02

Vin = VB + IOIR

Vin - VB = IDIR


When Vin > Vy, 201 > 0 Weiter

Vin = VB + Vo2 + Io3 B, Io3 B + VB

Vin - VB - VB = Vo2 when Vin = VB, Vo2 2 - VB Lo

Vin - 3Vo

Vin

Vn 2 VB + Iak

For = Vm-VB, Vm > 3VB, IDo, >0 verified

Vout = IoR Vm = 2VB + IoR, to = Vm - 2VB Vm = VB + IogR, Iog = Vm - Vp R
Vout = Vm - 2VB

ID2 2 IO3 + Io

2 Io3 + Io 2 Vin -VB + 1 Vin - 2VB 2VA - 3VB 70 When R 2 R 2 Vin 7 3VB Verified V

Vont 2 3 - VB Vin L 3VB Verifice

Vm - 2VB Vm > 3VB

Nort

3VB - 2VB z - ½ VB

- VB - 2VB z - ½ VB

3- Determine the terminal currents and the region of operation in this transistor circuit. Use a piecewise linear model for the diodes and assume V_{Don}=0.7V. In forward active mode β_F=100, V_{BEon}=0.7V, V_{CEsat}=0.2V, and in reverse active mode BR=3, VBCon=0.7V, VECsat=0.2V. (25 points)

Assume Active

5 = 0.7 + 0.7 + VCE

V(E = 3.6 > V(E saty verified / Assumption verified

IczBEIBZ MA

Name:

Student ID:

Page:7/8

4- Determine the terminal currents and the region of operation in this transistor circuit. In forward active mode β_F=99, V_{BEon}=0.7V, V_{CEsat}=0.2V, and in reverse active mode β_R=3. VBCon=0.7V, VECsat=0.2V.

(25 points) Assume Active

Wrong Assumption

E/B 70 vecified

Assume Saturation