$\omega_{\rm c}$

Name:

Student ID:

Page: 2/8

1- True or False?

 (10 points)

Name:

Student ID:

Page: 3/8

2- Find V_{out} versus V_{in}, as V_{in} varies from $-\infty$ to $+\infty$, if the diodes have a turn on voltage of V_{Don}=0 and are otherwise ideal (Use a piece-wise linear model). V_B is larger than 0.

(40 points)

Name: Student ID: Page:3/8

 $*$ For $V_{in} = -\infty$ we assume DI and D2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ are OFF. With these two turned off it's reasonable to assume that V_{Bz} will turn D3 ON. $\mathcal{I}_{\mathcal{D}_3} = \frac{V_B}{2R}$ \rightarrow $V_{out} = \frac{V_B}{2R}R - V_B = -\frac{V_B}{2}$ $\rightarrow \sqrt[3]{y} = N_{out} + V_{B} = \frac{V_{B}}{2}$ $V_x = V_{in} - V_B \rightarrow V_{p_1} = V_{in} - V_B$ and $V_{p_2} = V_x - V_y = V_{in} - \frac{3}{2}V_B$ Verify the assumptions: $I_{P_3}>0$, $V_{P_1}<0$, $V_{P_2}<0$ \emptyset For DI to turn on: $V_{in} > V_{B}$ 2 For D2 to turn on: $V_{in} > \frac{3}{2}V_B$ 3) For D3 to turn off: I_{D_3} should be negative, not passible. So 1 happens first. $\begin{array}{ccc}\n & \text{So } & \text{happens first.} \\
\times \text{ When } & \text{V}_\text{in} & \text{exceeds } \vee_\text{B}: \\
& \text{I}_{\text{D}_\text{f}} = \frac{V_{\text{in}} - V_{\text{B}}}{R} & \text{V}_{\text{X}} = V_{\text{in}} - V_{\text{B}} & \text{V}_{\text{in}} & \text{I}_{\text{in}} & \text{I}_{\text{out}} \\
& & \text{I}_{\text{in}} & \text{I}_{\text{in}} & \text{I}_{\text{in}} & \text{I}_{\text{out}} \\
& & \text{I}_{\text{in}} & \text$ $I_{\rho_3} = \frac{V_B}{2R}$ and $V_{out} = -\frac{V_B}{2}$ $V_y = \frac{V_g}{2}$ \rightarrow $V_{D_2} = V_x - V_y = V_{in} - \frac{3}{2} V_g$. Clearly the next important point is when by turns on.

Name: Student ID: Page:4/8

Name: Student ID: Page:5/8

Name: **Student ID:** Page: 5/8 3- Determine the terminal currents and the region of $Vcc = 5V$ operation in this transistor circuit. In forward active mode β_F=100, V_{BEon}=0.7V, V_{CEsat}=0.2V, and in reverse active mode $R_B = 290K$ \bigcirc D₂ β R=3, V_{BCon} =0.7V, V_{ECsat} =0.2V. $V_{P_{on}} = 0.7$ $(25$ points) * If we start with the assumption $Q₁$ of forward active mode, all diode will inevitably be turned on. Therefore: $V_x = 5v - V_{D_{ON}} = 4.3v \rightarrow 4.3v = T_B x 290k + 0.7v + 0.7v$ $\Rightarrow I_B = \frac{4.3 \sqrt{-0.7} \sqrt{-0.7}}{290 \times} = \frac{2.9 \sqrt{-0.7}}{290 \times} = 0.01 \frac{1}{290 \times} \rightarrow \frac{I_B}{B} > 0$ $T_{c} = I_{m}A$
 $T_{E} = 1.0I_{m}A$ $V_g = 0.7_v$ $V_E = 0$ $V_c = 5_v - 0.7_v - 0.7_v = 3.6_v$ \rightarrow $V_{CE} = 3.6v > V_{CE_{Sat}}$ V $I_{\delta} = I_{\rho} > 0$ \checkmark $\mathcal{I}_{b_{s}} = \mathcal{I}_{\mathcal{B}} + \mathcal{I}_{c} > \sigma \ \vee$ $I_{D_3} = I_C > 0$ v All initial assumption are correct and therefore The transistor is in the forward active mode and all dibdes are on.

Name: Student ID: Page:6/8

Name: **Student ID:** Page: 7/8 $Vcc = 2V$ 4- Determine the terminal currents and the region of operation in this transistor circuit. In $V_{BB}=4.7V$ $\frac{R_{B}=1K}{W}$ α_1
 $\frac{1}{\frac{1}{2}}$ α_2 $R_E=10\Omega$ forward active mode $\beta_F = 99$, , VBEon=0.7V, V_{CEsat}=0.2V, and in reverse active mode β _R=3. VBCon=0.7V, VECsat=0.2V. $(25$ points) Assuming forward active mode: $\mathcal{F}_{\mathbf{E}}$ KVL @ base: $4.7_v = I_B \times I_K + 0.7_v + (1 + \beta)I_B \times I_{O,32}$ \Rightarrow $T_B = \frac{4V}{16 \times 100 \times 10^5} = \frac{4V}{2K} = 2 mA \rightarrow T_B > 0$ $I_c = 19\%$ A $I_F = 200 \text{ mA}$ However: $V_c = 2v$ and $V_E = 10x \times 200mA = 2v$ - $V_{CE} = 0 < V_{CE_{Sat}} \times$ Transistor likely in saturation. Resolve assuming saturation:
 $V_E = 2v^{-0.2}v = 1.8v$ $4.7 \pm 0.7 \pm 0.2v$
 $T_E = \frac{1.8v}{10.2} = 180mA$ $T_g = \frac{4.7 \sqrt{-0.7 \gamma} - 1.8 \sqrt{-1.8 \gamma}}{1 \times 1} = \frac{2.2 \sqrt{-1.8 \gamma}}{1 \times 1} = 2.2 \frac{1}{1} =$ $\rightarrow I_c = I_E - I_B = 177.8 \text{ mA} < \beta I_B = 99 \times 2.2 \text{ mA}$ Transistor is in saturation