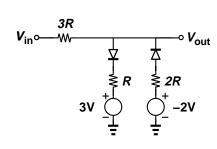
ECE 115A Fall '20 Midterm Exam Thursday, November 5, 2020 Instructor: Prof. M.F. Chang

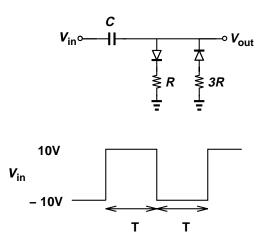

Name: UID:

Problem 1:
Problem 2:
Problem 3:
Problem 4:
Problem 5:
Problem 6:(Bonus)
Problem 7:(Bonus)

Total :

Problem 1 (20 marks)

For the shown circuit, sketch V_{out} vs. V_{in} . Let V_{in} changes from -5 V to 5 V. Label the important break points. Assume ideal diodes.

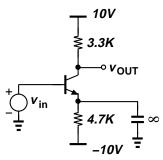


Problem 2 (20 marks)

For the circuit shown, utilizing ideal diodes, sketch the output waveform for the input shown. Label the most positive and most negative output levels.

(a) CR >> T

(b) CR = 0.5 T

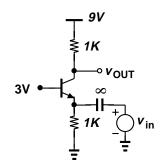


Problem 3 (20 marks)

For the common-emitter amplifier circuit shown below:

- Find the dc collector current of the transistor and the output dc voltage.
- Find g_m and $r_\pi.$
- Find the voltage gain $(v_{out}\!/\!v_{in})$ and the input resistance.

Assume β =100 and V_{BE(on)}=0.7 V.

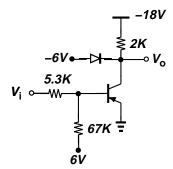


Problem 4 (20 marks)

For the common-base amplifier circuit shown below:

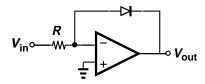
- Find the dc collector current of the transistor and the output dc voltage.
- Find g_m and r_e .
- Find the voltage gain $(v_{out}\!\!\!/\!v_{in})$ and the input resistance.

Assume β =100 and V_{BE(on)}=0.7 V.

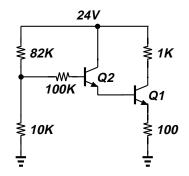


Problem 5 (20 marks)

For the circuit shown:


(a) find V_o when $V_i=0$

(b) What is the β to have Vo = 0 V and Vi = -6 V, assume device in forward active as long as V_{CE}<=0. Assume ideal diode and V_{EB(on)}=0.7 V.


Problem 6 (Bonus - 10 marks)

For the circuit shown below, find the expression of the output V_{out} in terms of the input V_{in} . (For diode $I_D = I_S \exp(V_D / V_T)$)

Problem 7 (Bonus - 10 marks)

For the circuit shown, transistors Q_1 and Q_2 operate in the active mode region with $V_{BE1} = V_{BE2} = 0.7 \text{ V}$, $\beta_1 = 100$ and $\beta_2 = 50$. Find I_{B1} , V_{C2} and V_{E2} .

20F-ECENGR115A-1 MIDTERM 1 UPLOAD

TOTAL POINTS

106.5	/	120

QUESTION 1

1120/20

✓ - 0 pts Correct

QUESTION 2

2 2 20 / 20

✓ - 0 pts Correct

QUESTION 3

3 3 20 / 20

✓ - 0 pts Correct

QUESTION 4

4 4 20 / 20

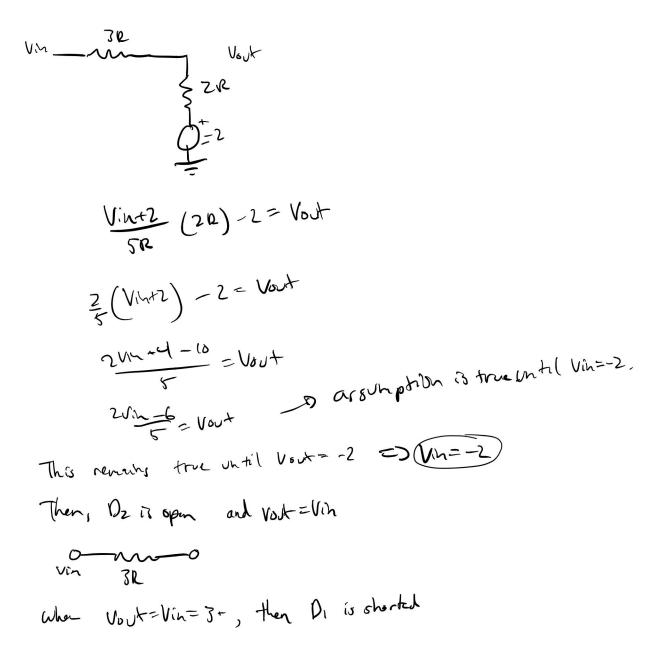
✓ - 0 pts Correct

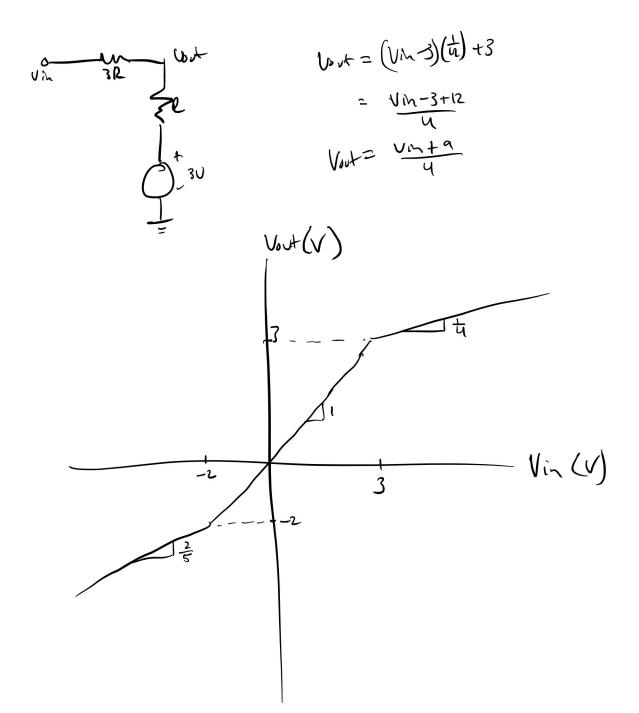
QUESTION 5

5 5 16 / 20

 \checkmark - 4 pts 4 points partial credit for a

QUESTION 6


 $6\ 6\ 10\ /\ 10$

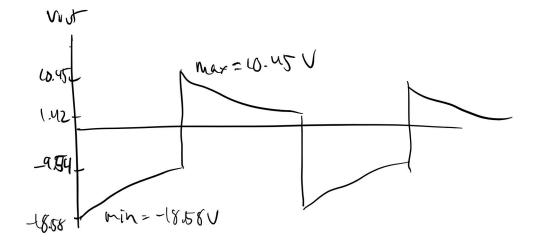

✓ - 0 pts Correct

QUESTION 7

770.5/10

- 9.5 Point adjustment

1120/20


Vert
$$_{H}(0+) - V_{0}Ut_{L}(T-) = 20$$

 $H \rightarrow High$
 $V_{0}Ut_{H}(T-) - V_{0}Ut_{L}(0+) = 20$
 $V_{0}Ut_{H}(0+) = \frac{1}{2} = V_{0}Ut_{L}(0+) = 20$
 $V_{0}Ut_{H}(0+) = \frac{1}{2} = -V_{0}Ut_{L}(0+) = 20$
 $V_{0}Ut_{H} - (I - \frac{1}{2}) V_{0}Ut_{L} = 20$
 $(I - \frac{1}{2}c_{L}) V_{0}Ut_{H} - V_{0}Ut_{L} = 20$
 $(I - \frac{1}{2}c_{L}) V_{0}Ut_{H} - V_{0}Ut_{L} = 20$
 $(I - \frac{1}{2}c_{L}) V_{0}Ut_{H} - V_{0}Ut_{L} = 20$
 $V_{0}Ut_{H} = -V_{0}Ut_{L}(\frac{1}{3})$
shere $V_{0}Ut_{H} = -V_{0}Ut_{L}(\frac{1}{3})$
 $V_{0}Ut_{H} = -V_{0}Ut_{L} = 20$
 $V_{0}Ut_{H} = -V_{0}Ut_{L} = -15$
 $V_{0}Ut_{L} = -15$

b) For 60 swing!

$$V_{out}(\tau_{-}) = -10e^{-jecT}$$
 as obsum in a)
since $T = 2EC$
 $V_{out}(\tau_{-}) = -(0e^{-\frac{2}{3}} = [-5.134]$
Note: $[V_{out}(\tau_{-}) = V_{out}(o_{1})e^{-\frac{2}{3}}]$ For low

Then, when Vin jumps, Vc does not change so
Usut jumps the same amount.
Vout
$$(T+) = 20 - 5 \cdot 134 = 144.86$$

Usut $(2T-) = 14.86 e^{-te(t-T)} = 14.86e^{-2}$
 $= 2.011$
Vout $(T-) = 1004 + (0+)e^{-2}$

For steady state:
Vort_H (0+)
$$e^{-2} = hort_{H}(\tau_{-})$$

 $V_{0} rt_{L}(0+)e^{-2} = V_{0} rt_{L}(\tau_{-})$
 $V_{0} rt_{L}(0+)e^{-2} = V_{0} rt_{L}(\tau_{-})$
 $V_{0} rt_{H}(0+) = -\frac{2}{3} V_{0} rt_{L}(0+) = 20$
 $V_{0} rt_{H}(0+) = e^{-2} V_{0} rt_{L}(0+) = 20$
 $V_{0} rt_{H}(0+)e^{-2} - V_{0} rt_{L}(0+) = 20$
 $e^{\frac{2}{3}} V_{0} rt_{H} - e^{-2} V_{0} rt_{L}(0+) = 20$
 $V_{0} rt_{H}(0+)e^{-2} - V_{0} rt_{L}(0+) = 20$
 $e^{\frac{2}{3}} V_{0} rt_{H} - e^{-2} V_{0} rt_{L}(0+) = 20$
 $V_{0} rt_{H}(0+)e^{-2} - V_{0} rt_{L}(0+) = 20$
 $V_{0} rt_{H}(0+)e^{-2} - V_{0} rt_{L}(0+) = 20$
 $V_{0} rt_{H}(0+)e^{-2} - V_{0} rt_{L}(0+) = -18.58$

2 2 20 / 20

Poblem 3)

$$IE = \left(\frac{V_{922}+10}{U700}\right) = 0.00198 \text{A}$$

$$I_{c} = IE \left(\frac{100}{VT}\right) = 0.00 \text{RbA} \quad (\text{sat commut is} \\ 0.0025 \text{ so} \\ \text{net solvated} \right)$$

$$\overline{9m^{2} I_{c}} = 0.075 \text{ s}$$

$$\left(72 = \frac{B}{9n} = 1327 \cdot 12 \Omega \right)$$

$$V_{r} = \frac{B}{9n} = 0.001 \text{ (3300)} = 0$$

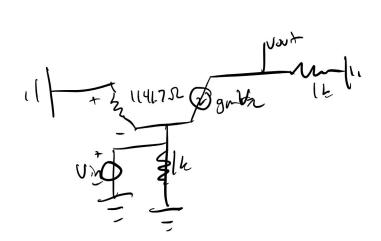
$$U_{0} = -9n (00n) (3300)$$

$$U_{0} = -9n (3300) = 0$$

$$U_{0} = -9n (3300) = 0$$

3 3 20 / 20

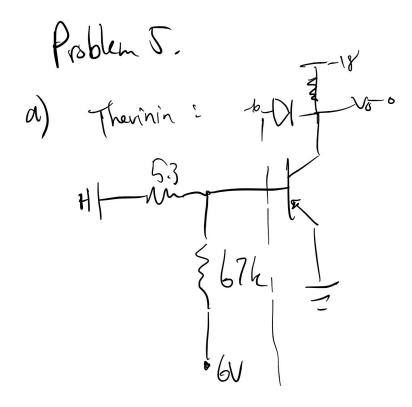
Problem 4.

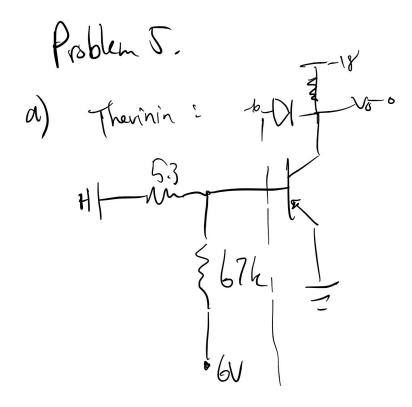

$$I = \frac{3-0.7}{100} = 0.0023A$$

$$I = \frac{100}{00} = 1 = 0.0023A$$

$$I = \frac{100}{00} = 1 = 0.00228A$$

$$I = \frac{100}{00} = \frac{10}{00} = 0.0087L S$$

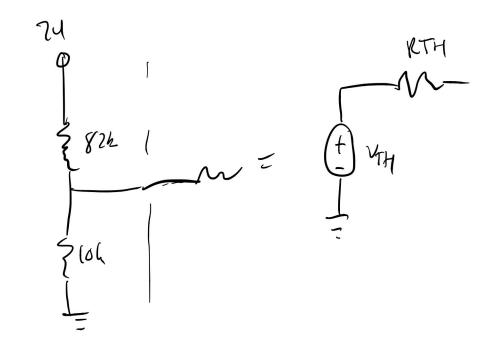

$$I = \frac{10}{10} = \frac{10}{10} = \frac{10}{10} = \frac{10}{10} = 10.3 \Omega$$


$$V_{\delta U}t = -g_m(V_{\pi})(000)$$

$$V_{\pi}t = -U_{1n}$$

$$V_{\delta U}t = g_m(1000)$$

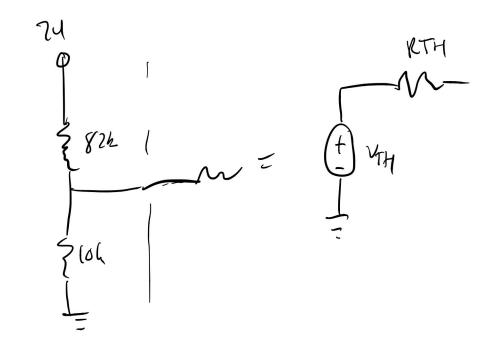
4 4 20 / 20



5 5 16 / 20

 \checkmark - 4 pts 4 points partial credit for a

 $\left(\right)$ Vin = lse -thut ut R Vout = VT In (Vin RUS)


Th:

6 6 10 / 10

 $\left(\right)$ Vin = lse -thut ut R Vout = VT In (Vin RUS)

Th:

$$\begin{aligned} & \int H = \frac{24}{8t^{40}} (10) = 2.6 U \\ & RH = \frac{24}{8t^{40}} (10) = 2.6 U \\ & RH = \frac{24}{8t^{40}} (10) = \frac{8913 \text{ P}}{100} \\ & I = \frac{100}{8t^{100}} + \frac{100}{100} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} + \frac{100}{8t^{100}} \\ & I = \frac{100}{8t^{100}} + \frac{100}{8t^{100}$$

7 7 0.5 / 10

- 9.5 Point adjustment