
UCLA — Electrical Engineering Dept.
EE114: Speech and Image Processing — Midterm Exam

Wednesday, February 5, 2014

Solutions

1. Consider the following continuous-time signal

xa(t) = cos(16πt) + sin(8πt) −∞ < t <∞

sampled at a sampling rate of Fs = 1/T = 16 Hz.

(a) (5 points) Find and sketch the sampled signal, x(n) = xa(t)|t=nT .
Find Np, the fundamental period of the signal in terms of samples.

Solution:

x(n) = [cos(16πt) + sin(8πt)]|t= n
16

= cos(πn) + sin(
π

2
n)

=
[
. . . 1 −2 1 0 1 −2 1 0 . . .

]
See Fig. 5

The fundamental period is Np = 4.

(b) (10 points) Find the Np−point DFT of x(n), starting at n = 0.

Solution: 4-DFT of cos(πn) is:[
1 −1 1 −1

]
←→

[
0 0 4 0

]
4-DFT of sin(π

2
n) is: [

0 1 0 −1
]
←→

[
0 −j2 0 j2

]
Therefore, 4-DFT of x(n) is:[

0 0 4 0
]

+
[
0 −j2 0 j2

]
=
[
0 −j2 4 j2

]

(c) (15 points) In Computer Assignment 1, we learned about the concept of zero-padding,
a method to improve the frequency resolution by concatenating zeros to the end of the
input sequence, and thus taking the transform of a longer sequence. However, inserting
the zeros in between the samples seems to be an intuitively better method. Let

xc(n) =
[
. . . 0 x(−1) 0 x(0) 0 x(1) 0 x(2) . . .

]
Find the 2Np−point DFT of xc(n), starting at n = 0.
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Solution:

xc cos(n) =
[
1 0 −1 0 1 0 −1 0

]
←→ Xc cos(k) =

[
0 0 4 0 0 0 4 0

]
xc sin(n) =

[
0 0 1 0 0 0 −1 0

]
=
[
0 0 1 0 0 0 0 0

]
+
[
0 0 0 0 0 0 −1 0

]
←→ Xc sin(k) =

[
1 −j −1 j 1 −j −1 j

]
−
[
1 j −1 −j 1 j −1 −j

]
Since xc(n) = xc cos(n) + xc sin(n), Xc(k) = Xc cos(k) +Xc sin(k).

Xc(k) =
[
0 −j2 4 j2 0 −j2 4 j2

]

(d) (10 points) In general, the resulting signal from the modified zero padding process de-
scribed in (c) can be expressed analytically as

xD(n) =

{
x(n

2
), n is even

0 otherwise

Let X(ejω) be the DTFT of x(n). Derive XD(ejω), the DTFT of xD(n), in terms of X(ejω).

Solution:

XD(ejω) =
∞∑

n=−∞,even

x(
n

2
)e−jnω

Let n′ = n/2. Since n is even, n′ will always be an integer.

XD(ejω) =
∞∑

n′=−∞

x(n′)e−j2n
′ω =

∞∑
n′=−∞

x(n′)e−j(2ω)n
′
= X(ej2ω)

(e) (10 points) Use the result you got from part (d) to derive XD(k), the 2Np−point DFT of
xD(n). Check if your derivation confirms with your answer in part (c).

Solution:
XD(k) = XD(e jω)

∣∣
ω= 2kπ

2Np

= X(e j2ω)
∣∣
ω= 2kπ

2Np

Let ω′ = 2ω = 2kπ
Np

. Therefore,

XD(k) = X(ejω
′
)
∣∣∣
ω′= kπ

2Np

= X(k), k = 0, 1, ..., 2Np − 1
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From (c) we see that Xc(k) is X(k) in part(b) with double length, which confirms with
our derivation.
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2. Suppose you have a signal x(n) consisting of 16384 data points. The magnitude of X(k) =
DFT{x(n)} is shown in Fig. 1. The STFT is then performed on x(n) with a Hamming window
of length Nw = 512 and 50% overlap. The magnitudes and phases of the modulation curves
along two of the peaks, DFT{X(n, k1)} and DFT{X(n, k2)}, are shown in Figs. 2a, 2b, 3a,
and 3b, respectively.

(a) (30 points) Sketch the spectrogram of x(n).

(b) (10 points) Sketch x(n).

Hint: The magnitude and phase of 64−point DFT of

f(n) =

{
1 0 ≤ n ≤ 31

0 32 ≤ n ≤ 63

are shown in Figs. 4a and 4b. You can assume that Figs.2a, 2b and Figs. 4a, 4b are essentially
the same.

Figure 1: |X(k)|.
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(a) Magnitude of DFT{X(n, k1)}. (b) Phase of DFT{X(n, k1)}.

(a) Magnitude of DFT{X(n, k2)}. (b) Phase of DFT{X(n, k2)}.

(a) Magnitude of DFT{f (n)}. (b) Phase of DFT{f (n)}.
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Solution:

(a) From figure 1 we see clearly that there are only two different main frequencies at π
2

and π

4
(some small side lobes around the two frequencies are due to windowing effect).

But we can’t see where these two frequencies are located with respect to time in the
spectrogram. From fig. 2,3,4,5 we see that X(n, k1) andX(n, k2) are just two “shifted”
rectangular windows. We can think about this as two windowed cosines located at
different locations with respect to time. Fig. 6 and 7 indicates the location of first
window (from the hint we can assume that fig. 2 and 3 are same as Fig. 6 and 7). By
observing fig. 3 and 5, we can see that the phase difference between two windows is .
The amount of n-shift can then be found from the property of DFT.

x(n− n0)←→ X(k)e−j
2π
N
n0k

2π

N
n0 = π

n0 =
N

2

The location of the second window is then found.

The spectrogram should look like Fig. 6.

(b) From (a) we know that x(n) is a discrete version of the plot in Fig. 7
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3. (a) (5 points) Explain in two or three sentences why we need to define a new type of transform,
the Short-Time Fourier Transform, for analyzing speech signals.

Solution: The speech signal is time-varying and the DFT alone does not reveal the
transitions of the spectral content. The STFT decomposes the speech signal into
windowed segments, and the resulting signal can be consider stationary for short
enough windows. The standard DFT can therefore be performed to extract useful
spectral information.

(b) (10 points) Consider the following continuous-time signal

x(t) =

{
cos(2000πt) −∞ < t ≤ 1.0

cos(1000πt2) 1.0 < t <∞

sampled at a sampling rate of Fs = 8000 Hz. The STFT with a hamming window of length
Nw = 128 and 50% overlap, defined as

X(n, e jω) =
∞∑

m=−∞

x(m)wh(64n−m)e−jωm

is then performed on the sampled signal. Sketch |X(64, e jω)| for 0 ≤ ω ≤ π.

Solution: Consider Fig. 8:

After discretizing the signal we get:

x(m) =

{
cos(π

4
m) −∞ < m ≤ 8000

cos( π
64000

m2) 8000 < m <∞

n = 64 corresponds to the window (4096 − 64) < m ≤ 4096, x(m) = cos(π
4
m). The

main lobe bandwidth is
8π

Nw

=
8π

128
=
π

16
.

See Fig. 9.

(c) (10 points) Sketch |X(n, e j π
4 )| for 0 ≤ n ≤ 251.

Transition of the signal occurs at m = 8000, which corresponds to n = 8000
64

+ 1 = 126

Solution: Consider the Fig. 10.

(d) (15 points) Sketch the spectrogram of the signal for 0 ≤ ω ≤ π and 0 ≤ n ≤ 251. You
can ignore the side lobes.
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Solution:

ω =

{
π
4

m ≤ 8000
d
dm

[ π
64000

m2] = π
32000

m m > 8000

the instant frequency ω increases linearly after m = 8000
ω = π

4
at m = 8000 or n = 8000

64
+ 1 = 126

ω = π
2

at m = 16000 or n = 16000
64

+ 1 = 251 Consider Fig. 11
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4. Consider the signal:
s(n) = (−α)n for n ≥ 0

(a) (10 points) Find the first order prediction coefficient by setting up and solving the normal
equation(s) of LPC below:

∞∑
n=−∞

s(n)s(n− i) =

p∑
k=1

αk

∞∑
n=−∞

s(n− k)s(n− i)

(b) (10 points) Find the corresponding Emin and gain G from the minimum least-square error
equation below:

Emin =
∞∑

n=−∞

(
s2(n)−

p∑
k=1

αks(n− k)s(n)

)
(c) (5 points) If the energy of the source signal is normalized, i.e.

∑∞
n=−∞ u

2(n) = 1, explain
from the least-square error function

E =
∞∑

n=−∞

(s(n)− ŝ(n))2

why Emin = G2 when E achieves Emin.

(d) (15 points) The current sample of the signal s(n) can be perfectly predicted from the
past sample as s(n) = (−α)s(n− 1), which implies that the signal s(n) can be perfectly
predicted by the estimator ŝ(n) with first order prediction. If so, should the minimum
least-square error Emin be zero? If yes, explain why the all-pole model

V (z) =
S(z)

U(z)
=

G

1− α1z−1

with G = 0 makes sense. If No, explain why Emin 6= 0 even though ŝ(n) can perfectly
predict s(n)

Solution:

(a) Let i = 0, then

∞∑
n=−∞

s(n)s(n− i) =
∞∑

n=−∞

s2(n) =
1

1− (−α)2

∞∑
n=−∞

s(n− k)s(n− i) =
∞∑

n=−∞

s(n− 1)s(n) =
−α

1− (−α)2

Therefore,

α1 =
−α

1− (−α)2
1− (−α)2

1
= −α

Page 9 of 13 Please go to next page. . .



(b)

Emin =
1

1− (−α)2
− (−α)

−α
1− (−α)2

= 1 = G2 = G

(c)

s(n)− ŝ(n) =

p∑
k=1

aks(n− k)s(n) +Gu(n)−
p∑

k=1

aks(n− k)s(n) = Gu(n)

Therefore,

Emin =
∞∑

n=−∞

G2u2(n) = G2

∞∑
n=−∞

u2(n) = G2

(d) LPC can not predict the very first sample s(0) out of nothing. So there must be a
finite error between ŝ(n) and s(n). The missing term from the prediction is (−α)0 = 1,
which corresponds to Gu(n) with G = 1 and u(n) = δ(n).
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Figure 5: Problem 1a

Figure 6: Problem 2a
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Figure 7: Problem 2b

Figure 8: Problem 3b
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Figure 9: Problem 3b

Figure 10: Problem 3c

Figure 11: Problem 3d
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