Solutions

1. (10 points) Consider the following 4×4 image, where the numbers represent levels of gray in the range 0 (black) through 7 (white):

Apply histogram equalization to the original image, where the target cumulative histogram is linear, starting at 2 at gray level 0. Find the resulting image and the corresponding histogram. Has contrast been enhanced and how can you tell?

Output image:

Histogram and cumulative histogram of the output image:

Before processing, the darkest pixels were at gray level 1 and the brightest ones at gray level 4; after processing, the darkest pixels are still at gray level 1, but the brightest pixels are now at gray level 7. Contrast has been enhanced.

2. (a) (5 points) Construct a 3-point unitary DCT matrix. Your matrix should contain only exact numbers (i.e. NO functions and decimals). Your matrix should look like the one below.

 $C(k, n) = \alpha(k) \cos \left(\frac{\pi(2n+1)k}{c} \right)$

6

 \setminus

Solution:

$$
\alpha(k) = \begin{cases} \frac{1}{\sqrt{3}} & \text{if } k = 0\\ \sqrt{\frac{2}{3}} & \text{if } k = 1, 2 \end{cases}
$$

Therefore,

$$
\mathbf{C} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \sqrt{\frac{2}{3} \frac{\sqrt{3}}{2}} & 0 & -\sqrt{\frac{2}{3} \frac{\sqrt{3}}{2}} \\ \sqrt{\frac{2}{3} \frac{1}{2}} & -\sqrt{\frac{2}{3}} & \sqrt{\frac{2}{3} \frac{1}{2}} \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ \sqrt{\frac{3}{2}} & 0 & -\sqrt{\frac{3}{2}} \\ \frac{1}{\sqrt{2}} & -\sqrt{2} & \frac{1}{\sqrt{2}} \end{bmatrix}
$$

(b) (10 points) Find a transformation matrix Φ transforming V_C to V_F , where V_C is the unitary 3-DCT of u and $V_{\rm F}$ is the unitary 3-DFT of u . In other words, let $u\stackrel{\rm DCT}{\longrightarrow}V_{\rm C}$ and $u \xrightarrow{\text{DFT}} V_F$. Find a 3-by-3 matrix describing the operation $V_C \rightarrow V_F$. Your matrix should look like the one below.

$$
\boldsymbol{\Phi} = \frac{1}{3} \begin{bmatrix} \square & \square & \square \\ \square & \sqrt{\frac{3}{2}} \left(\frac{3}{2} \square \mathbf{j} \frac{\sqrt{3}}{2} \right) & \frac{1}{\sqrt{2}} \left(\frac{3}{2} \square \mathbf{j} \frac{3\sqrt{3}}{2} \right) \\ \square & \sqrt{\frac{3}{2}} \left(\frac{3}{2} \square \mathbf{j} \frac{\sqrt{3}}{2} \right) & \frac{1}{\sqrt{2}} \left(\frac{3}{2} \square \mathbf{j} \frac{3\sqrt{3}}{2} \right) \end{bmatrix}
$$

Solution: Since $\bm{V}_C = \bm{C} \bm{u}$ and $\bm{V}_{\rm F} = \bm{F} \bm{u}$, $\bm{u} = \bm{C}^{\sf T} \bm{V}_{\rm C}$ and $\bm{V}_{\rm F} = (\bm{F} \bm{C}^{\sf T}) \bm{V}_{\rm C}$. Therefore,

$$
\Phi = \mathbf{F} \mathbf{C}^{\mathsf{T}} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & -\frac{1}{2} - j\frac{\sqrt{3}}{2} & -\frac{1}{2} + j\frac{\sqrt{3}}{2} \\ 1 & -\frac{1}{2} + j\frac{\sqrt{3}}{2} & -\frac{1}{2} - j\frac{\sqrt{3}}{2} \end{bmatrix} \begin{bmatrix} 1 & \sqrt{\frac{3}{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & -\sqrt{2} \\ 1 & -\sqrt{\frac{3}{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}
$$

$$
= \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 0 & \sqrt{\frac{3}{2}} \left(\frac{3}{2} - j\frac{\sqrt{3}}{2}\right) & \frac{1}{\sqrt{2}} \left(\frac{3}{2} + j\frac{3\sqrt{3}}{2}\right) \\ 0 & \sqrt{\frac{3}{2}} \left(\frac{3}{2} + j\frac{\sqrt{3}}{2}\right) & \frac{1}{\sqrt{2}} \left(\frac{3}{2} - j\frac{3\sqrt{3}}{2}\right) \end{bmatrix}
$$

(c) (10 points) Let $V_F(k) = DFT{u(n)} = [0 \ 1 \ 1]$. Find $V_C(k) = DCT{u(n)}$.

Solution: The matrix product of two unitary matrices is still unitary. One can easily verify by checking the norm of each column and the inner product between each column in Φ . Using the property of unitary matrix we get

$$
\boldsymbol{V}_{\mathrm{C}} = \boldsymbol{\varPhi}^{\mathsf{H}} \boldsymbol{V}_{\mathrm{F}} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ 0 & \sqrt{\frac{3}{2}} \left(\frac{3}{2} + j\frac{\sqrt{3}}{2} \right) & \sqrt{\frac{3}{2}} \left(\frac{3}{2} - j\frac{\sqrt{3}}{2} \right) \\ 0 & \frac{1}{\sqrt{2}} \left(\frac{3}{2} - j\frac{3\sqrt{3}}{2} \right) & \frac{1}{\sqrt{2}} \left(\frac{3}{2} + j\frac{3\sqrt{3}}{2} \right) \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ \sqrt{\frac{3}{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}
$$

3. (a) (10 points) Consider a set of symbols, A, B, C , and D , with associated probabilities $P(A), P(B), P(C)$ and $P(D)$. Suppose that two different Huffman codes for this symbol set are designed, using standard Huffman code design procedures.

If $P(B) = \frac{2}{5}$, find $P(C) + P(D)$.

(b) (10 points) Consider another set of symbols, E, F, G , and H , with associated probabilities $P(E), P(F), P(G)$ and $P(H)$. Suppose that three different Huffman codes for this symbol set are designed, using standard Huffman code design procedures.

If $P(G) = \frac{1}{9}$, find $P(H)$.

Solution: Code 1 and Code 3 generate the same Huffman trees as the previous ones in part (a), which means $P(E) = P(F)$. The tree generated from Code 2 is shown below.

4. A 2D continuous sinusoidal wave of unit amplitude $f_a(x, y)$ propagating along the diagonal direction is sampled (above Nyquist rates) at $F_{sx} = F_{sy} = 8000$ pixels/cm, to obtain $f(m, n) =$ $f_a(m/F_{sx}, n/F_{sy})$. The magnitude of the resulting image, $|f(m, n)|$, is shown below in an 800×800 pixel frame, where black represents 0 and white 1.

Remember that the origin is located at the upper-left corner. Also, m corresponds to the horizontal coordinate and n corresponds to the vertical coordinate.

(a) (5 points) What are the spatial frequencies of the analog sinusoid in the horizontal and vertical direction, F_x and F_y , respectively?

Solution: The analog sinusoid is

$$
f_{\rm a}(x,y) = \cos\left(2\pi F_x x + 2\pi F_y y\right),\,
$$

where $1/F_x$ and $1/F_y$ are its horizontal and vertical periods. The sampled image is equal to

$$
f(m, n) = \cos\left(2\pi \frac{F_x}{F_{sx}} m + 2\pi \frac{F_y}{F_{sy}} n\right).
$$

From the figure we see that the periods of $|f(m, n)|$ along each direction are equal to $\frac{800}{4} = 200$ pixels, which means that the periods of $f(m, n)$ are 400 pixels in each direction. This implies that

$$
F_x = \frac{F_{sx}}{400} = 20 \,\text{cm}^{-1}, \quad F_y = F_x.
$$

This means that

$$
f_{a}(x, y) = \cos (2\pi (20x + 20y)).
$$

(b) (10 points) Design a new set of (non-zero!) sampling rates (F_{sx_new}, F_{sy_new}) for which the resampled image, $f_r(m, n)$, is such that $|f_r(m, n)|$ will look like the image below in an 800×800 pixel frame. Will the image reconstructed from $f_r(m, n)$ be aliased?

Solution: The resampled image is equal to

$$
f_{\rm r}(m,n) = \cos\left(2\pi \frac{F_x}{F_{\rm sx,new}} m + 2\pi \frac{F_y}{F_{\rm sy,new}} n\right).
$$

From the figure, it appears that the resampled image is a sinusoid with a period in the horizontal direction of 800 pixels and a (seemingly) zero frequency in the vertical direction. This yields

$$
\frac{F_{\text{sx,new}}}{20} = 800 \quad \Rightarrow \quad F_{\text{sx,new}} = 16\,000 \,\text{pixels/cm}, \quad F_{\text{sy,new}} = \frac{F_y}{p},
$$

for any positive integer p. Let us take $p = 1$, which means $F_{sy_new} = 20$ pixels/cm. Clearly, $F_{\textit{sy_new}}$ is below the Nyquist rate in the vertical direction and the reconstructed image will be aliased.