
EE113: Digital Signal Processing Spring 2015
Solution to Midterm Exam

1. Consider a relaxed system with input x[n] and output y[n] that satisfy the difference equation

y[n] = ny[n− 1] + x[n]

(a) If x[n] = δ[n] is input to the system then determine the output y[n] for all n.

Suppose x[n] = δ[n]. Since the system is relaxed we know y[n] = 0 for n < 0. For n ≥ 0

y[0] = 1, y[1] = 1, y[2] = 2, y[3] = 6, y[4] = 24

From the above we can deduce that y[n] = n!u[n]

(b) Is the system Linear? Justify your answer.

Consider the following sequences x1[n] = aδ[n] and x2[n] = bδ[n] and let the corresponding
outputs be y1[n] and y2[n] respectively. Check that y1[n] = an!u[n] and y2[n] = bn!u[n]. If
x[n] = x1[n] + x2[n] then if the system is linear then the output has to be y1[n] + y2[n]. The
output corresponding to x[n] is denoted as y[n] and is computed as follows.

For n < 0 y[n] = 0, this is true because the system is relaxed.

y[0] = a+ b, y[1] = a+ b, y[2] = 2(a+ b), y[3] = 6(a+ b), y[4] = 24(a+ b)..

Hence, from the above y[n] = n!u[n](a+ b), which is equal to y1[n] + y2[n].

In general consider x1[n] and x2[n] as the input sequences and the corresponding outputs are y1[n]
and y2[n] respectively. We know that yi[n] = nyi[n − 1] + xi[n] for i = {1, 2}. Let us consider
another input sequence x3[n] = ax1[n] + bx2[n] and let the corresponding output be y3[n]. In
order to find y3[n] we need to find a sequence which satisfies y3[n] − ny3[n− 1]− x3[n] = 0. Let
us check if ay1[n] + by2[n] satisfies this equation. We first substitute ay1[n] + by2[n] in the LHS to
get ay1[n] + by2[n]− nay1[n− 1]− nby2[n− 1]− x3[n]. Substitute x3[n] = ax1[n] + bx2[n] to get
a(y1[n] − ny1[n − 1]− x1[n]) + b(y2[n] − ny2[n− 1]− x2[n]). We know yi[n] = nyi[n− 1] + xi[n]
for i = {1, 2}. Hence, a(y1[n]− ny1[n− 1]− x1[n]) + b(y2[n]− ny2[n− 1]− x2[n]) = 0. Note that
the output corresponding to any input sequence is unique because the system is relaxed.

(c) Is the system time-invariant? Justify your answer.

To determine if the system is time invariant, consider the input δ[n − 1]. The corresponding
output yd[n] is computed as follows. yd[n] = 0 for all n < 0. For n > 0

yd[0] = 0, yd[1] = 1, yd[2] = 2, yd[3] = 6, yd[4] = 24..

We know from part i) that output to δ[n] is y[n] = n!u[n]. Observe that the above sequence
yd[n] 6= y[n− 1] = (n− 1)!u[n− 1]

(d) Is the system BIBO stable? Justify your answer.

From part i) the output for δ[n] is y[n] = n!u[n]. Clearly the input is bounded, but there does
not exist a bound M on y[n] because y[n] for large enough n will exceed any finite value M .



2. A causal system is described by the following block diagram.
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(a) Determine the constant coefficient difference equation that describes the system, and find its im-
pulse response.

Solution:
Interchanging the order of the two systems in cascade, we get

y(n) = −
1

6
y(n− 1) +

1

3
y(n− 2) + x(n) + x(n− 1).

The impulse response can be found by computing the zero-state response to x(n) = δ(n). We
first find the homogeneous solution:
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6
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3
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and hence,

yh(n) = C1
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)n
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)n

, for all n.

Letting x(n) = δ(n) and assuming that the system is relaxed, we get y(0) = x(0) = 1 and
y(1) = − 1

6
y(0) + x(1) = 5

6
. From the homogeneous solution we get

y(0) = C1 + C2 = 1
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and solving for C1 and C2 yields C1 = 9

7
and C2 = − 2

7
, and consequently,
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(b) Given x(n) = n2nu(−n), find the output of the system using the z-transform.

Solution:
The output y(n) when x(n) = n2nu(−n) can be found by computing the inverse z-transform of
Y (z) = H(z)X(z). The z-transform of h(n) is readily found from the impulse response:

H(z) =
1 + z−1
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, ROC: |z| >
2

3
.
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The z-transform of x(n) is given by

X(z) = Z{x(n)} = −z
d

dz
Z{2nu(−n)} = −z

d

dz

[

0
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= −
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(2− z)2
, ROC: |z| < 2.

Consequently, Y (z) is given by

Y (z) = H(z)X(z) =
−2z3 − 2z2

(z − 1

2
)(z + 2

3
)(z − 2)2

, ROC:
2

3
< |z| < 2.

Using partial fraction expansion, we get

Y (z) =
A
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where
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∣
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∣
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Thus,
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and since the ROC of Y (z) is given by 2

3
< |z| < 2, we get
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u(n)
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↔
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z

z − 2
↔ −2nu(−n− 1)

2z

(z − 2)2
↔ −n2nu(−n− 1)

and consequently,

y(n) =

[

−
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7

(

1
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)n−1

+
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(

−
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]

u(n− 1) +

[

7

4
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u(−n).

Alternatively, using partial fraction expansion on Ỹ (z) = Y (z)/z, we would get

y(n) =

[

−
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−
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3. The difference equation of a relaxed system is:

y(n) + 0.5y(n− 1)− 0.14y(n− 2) = x(n)

(a) Find a closed form for the impulse response h(n) (i.e., the zero state system output when the
input is an impulse).

Solution:
By setting x(n) = δ(n), we have

h(n) + 0.5h(n− 1)− 0.14h(n− 2) = δ(n) =

{

1, n = 0
0, n 6= 0

.

Hence, for n ≥ 1, h(n) can be found by solving homogeneous difference equation

h(n) + 0.5h(n− 1)− 0.14h(n− 2) = 0. (1)

The characteristic polynomial for (1) can be solved by

(

λ+
7

10

)(

λ−
1

5

)

= 0,

thus, the modes are

λ1 = −
7

10
, λ2 =

1

5
.

Hence,

h(n) = C1

(

−
7

10

)n

+ C2

(

1

5

)n

, n ≥ 0.

Since the system is relaxed, y(−1) = h(−1) = 0 and h(0) = δ(0) = 1, which gives

C1 =
7

9
, C2 =

2

9
.

Therefore,

h(n) =

[

7

9

(

−
7

10

)n

+
2

9

(

1

5

)n]

u(n).

(b) If the input to the system is x(n) = 2δ(n) + δ(n− 2), what is the output?

Solution:
The output y(n) of the system can be expressed as the convolution of x(n) and h(n), i.e.,

y(n) = x(n) ∗ h(n)

= [2δ(n) + δ(n− 2)] ∗ h(n)

= 2h(n) + h(n− 2).
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Hence, using h(n) in part (a) gives us
i) n ≥ 2,

y(n) = 2h(n) + h(n− 2)

= 2

[

7
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=
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+
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+
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=
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.

ii) 0 ≤ n ≤ 1,

y(n) = 2h(n)

= 2

[

7
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+
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(
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)n]

u(n)

=
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+
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.

Therefore,

y(n) =







0, n < 0,
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+ 4
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, n = 0, 1,
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(
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(c) For what values of α is g(n) = αnh(n) a finite energy sequence?

Solution:
The energy Eg of g(n) is given by

Eg =

∞
∑

n=−∞

|g(n)|2

=
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=
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.

To be a finite energy,
∣

∣
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∣
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∣
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or equivalently,

|α| <
10

7
, |α| < 5, and |α| <

√

50

7
.

Hence, α should have a value in the range of |α| < 10

7
.
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