Name:

Student ID:

1. A causal linear time-invariant system is initially relaxed and described by the difference equation

$$y(n) - 5y(n-1) + 6y(n-2) = 2x(n-1)$$

- (a) Determine the modes of the system.
- (b) Determine the impulse response of the system.
- (c) Determine the step response of the system using convolution.
- (d) Determine the step response of the system without using convolution.
- 2. (a) Consider the following complex series expansion of the natural logarithm for |t| < 1,

$$\ln(1+t) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} t^n, \qquad |t| < 1$$

Use the result to determine the sequence x(n) whose z-transform is given by

 $X(z) = \ln(1 + \alpha z^{-1}), \qquad |z| > |\alpha|$

(b) Find the inverse z-transform of

$$X(z) = \frac{z^{-1}}{1 - (\frac{1}{2})^{50} z^{-50}}, \qquad |z| > \frac{1}{2}$$

3. Consider the system illustrated in Figure 1. The output of an LTI system with an impulse response $h(n) = (\frac{1}{4})^n u(n+10)$ is multiplied by a unit step function u(n) to yield the output of the overall system. Answer each of the following questions, and briefly justify your answers:

Figure 1: The overall system

- (a) Is the overall system linear?
- (b) Is the overall system time-invariant?
- (c) Is the overall system causal?
- (d) Is the overall system BIBO stable?

- 1. (a) The modes are the roots of the equation $\lambda^2 5\lambda + 6 = 0$, which are $\lambda_1 = 2$ and $\lambda_2 = 3$.
 - (b) The general homogeneous solution is $C_1 2^n + C_2 3^n$. The initial conditions are h(0) = 0and h(1) = 2. We have

$$\begin{array}{rcl} C_1 + C_2 &= 0\\ 2C_1 + 3C_2 &= 2 \end{array}$$

and the solutions are $C_1 = -2$ and $C_2 = 2$. The impulse response is $h(n) = [-2(2)^n + 2(3)^n]u(n)$.

(c) The step response can be computed by

We can also write it as $[3^{n+1} - 2(2)^{n+1} + 1]u(n)$.

(d) We can get the step response without using convolution. Let the step response be w(n), then we first solve the particular solution, which is $w_p(n) = Ku(n)$. Substituting $w_p(n) = Ku(n)$ into the difference equation, we get

$$Ku(n) - 5Ku(n-1) + 6Ku(n-2) = 2u(n-1)$$

For $n \ge 2$, we have K = 1 and hence $w_p(n) = u(n)$. The homogeneous solution is $w_h(n) = A_1(2)^n + A_2(3)^n$, hence the complete step response is $w(n) = w_p(n) + w_h(n) = A_1(2)^n + A_2(3)^n + u(n)$. By using the initial conditions w(0) = 0 and w(1) = 2, we get

$$\begin{array}{rcl} A_1 + A_2 + 1 &= 0\\ 2A_1 + 3A_2 + 1 &= 2 \end{array}$$

and the solutions are $A_1 = -4$ and $A_2 = 3$. We then have the step response as $w(n) = [-4(2)^n + 3(3)^n + u(n)]u(n)$ which can be also written as $w(n) = [3^{n+1} - 2(2)^{n+1} + 1]u(n)$. It is the same as the result we got by using convolution.

2. (a) We use the series expansion to get

$$X(z) = \ln(1 + \alpha z^{-1}) \\ = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \alpha^n z^{-n}$$

By comparing it to the definition of z-transform, which is

$$X(z) = \sum_{n=1}^{\infty} x(n) z^{-n}$$

we get $x(n) = \frac{(-1)^{n+1}}{n} \alpha^n$ for $n \ge 1$, and x(n) = 0 for n < 1. Hence, $x(n) = \frac{(-1)^{n+1}}{n} \alpha^n u(n-1)$.

(b) We can write X(z) as

$$X(z) = \frac{z^{-1}}{1 - (\frac{1}{2})^{50} z^{-50}}$$
$$= z^{-1} \sum_{k=0}^{\infty} (\frac{1}{2})^{50k} z^{-50k}$$
$$= \sum_{k=0}^{\infty} (\frac{1}{2})^{50k} z^{-(50k+1)}$$

By comparing it with the definition of z-transform, we get

$$x(n) = \begin{cases} \left(\frac{1}{2}\right)^{n-1}, & n = 50k+1, k \in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$$

3. We let the output of the first sub-block (the LTI system) be w(n). Hence, y(n) = w(n)u(n).

(a) The system is linear.

Suppose $y_1(n)$ and $y_2(n)$ are the output sequences of the overall system to arbitrary input sequences $x_1(n)$ and $x_2(n)$, respectively. We also denote by $w_1(n)$ and $w_2(n)$ the outputs of the LTI system with impulse response h(n). Hence, $y_1(n) = w_1(n)u(n)$ and $y_2(n) = w_2(n)u(n)$. Suppose the overall output to the input $x(n) = ax_1(n) + bx_2(n)$ is y(n). Since the first sub-block is LTI, we know $w(n) = aw_1(n) + bw_2(n)$. Then we have

$$y(n) = w(n)u(n) = (aw_1(n) + bw_2(n))u(n) = aw_1(n)u(n) + bw_2(n)u(n) = ay_1(n) + by_2(n)$$

which proves the overall system is linear.

(b) The system is not time-invariant. It can be shown by comparing the output sequences to input $x_1(n) = \delta(n)$ and $x_2(n) = x_1(n-4) = \delta(n-4)$. We have $y_1(n) = h(n)u(n) = (\frac{1}{4})^n u(n+10)u(n) = (\frac{1}{4})^n u(n)$ and $y_2(n) = h(n-4)u(n) = (\frac{1}{4})^{n-4}u(n+6)u(n) = (\frac{1}{4})^{n-4}u(n)$. Since $y_2(n) \neq y_1(n-4)$, we conclude that the overall system is not time-invariant. (c) The system is not causal.

We note that the LTI system with impulse response $h(n) = (\frac{1}{4})^n u(n+10)$ is not causal. Therefore, any y(n) for $n \ge 0$ depends on the input after n, which contradicts the definition of a causal system.

(d) The system is BIBO stable.

First we note that the LTI system with impulse response $h(n) = (\frac{1}{4})^n u(n+10)$ is BIBO stable because $\frac{1}{4} < 1$. Hence, for any bounded input x(n) with $|x(n)| < \infty$ we have $|w(n)| < \infty$, and also $|y(n)| = |w(n)u(n)| < \infty$, which proves it is a BIBO stable system.