1. Consider the following two systems

$$y_1(n) = \frac{1}{4} \sum_{k=n-3}^{n} x(k),$$

$$y_2(n) = \begin{cases} x\left(\frac{n}{3}\right) & n = 3k, k \text{ integer} \\ 0 & n \neq 3k, k \text{ integer}. \end{cases}$$

(a) Determine whether the systems are linear, time-invariant, relaxed, BIBO stable, and causal. Justify your answer to receive full credit.

Solution:

Properties	$y_1(n)$	$y_2(n)$
Relaxed	Yes	No
Linear	Yes	Yes
Time-Invariant	Yes	No
BIBO Stable	Yes	Yes
Causal	Yes	No

- System $y_1(n)$:
 - $y_1(n) = \frac{1}{4} \sum_{k=n-3}^n x(k) = \frac{1}{4} [x(n-3) + x(n-2) + x(n-1) + x(n)]$ can be considered as a relaxed constant coefficient difference equation. It is relaxed, linear, time-invariant, BIBO stable, and causal.
- System $y_2(n)$:
 - · Not relaxed: Counter example: if the first non-zero sample of x(n) is at n = -1, then $y_2(-3)$ will be non-zero, which is before -1.
 - · Linear: Let two outputs be

$$y_2^a(n) = \begin{cases} x_a\left(\frac{n}{3}\right) & n = 3k, k \text{ integer} \\ 0 & n \neq 3k, k \text{ integer.} \end{cases},$$

and

$$y_2^b(n) = \begin{cases} x_b\left(\frac{n}{3}\right) & n = 3k, k \text{ integer} \\ 0 & n \neq 3k, k \text{ integer.} \end{cases},$$

for an input $x_a(n)$ and $x_b(n)$, respectively. The output y(n) for an input $Ax_a(n) + Bx_b(n)$ with some constants A and B is given by

i) if n = 3k, k integer,

$$y(n) = Ax_a\left(\frac{n}{3}\right) + Bx_b\left(\frac{n}{3}\right)$$
$$= Ay_2^a(n) + By_2^b(n).$$

ii) if $n \neq 3k$, k integer,

$$y(n) = 0.$$

Based on i) and ii), y(n) for an input $Ax_a(n) + Bx_b(n)$ is

$$y(n) = Ay_2^a(n) + By_2^b(n),$$

which implies that system $y_2(n)$ is linear.

· BIBO Stable: For a bounded sequence $|x(n)| \le M < \infty$ with a finite positive number M,

$$|y_2(n)| = \begin{cases} |x\left(\frac{n}{3}\right)| \le M < \infty & n = 3k, k \text{ integer} \\ 0 < \infty & n \ne 3k, k \text{ integer.} \end{cases}$$

implying that $|y_2(n)|$ is bounded output.

- · Not Time-Invariant: Consider inputs $\delta(n)$ and $\delta(n-1)$. The outputs are $\delta(n)$ and $\delta(n-3)$. This shows that $y_2(n)$ is not time-invariant.
- · Not causal: For example, $y_2(-3)$ depends on x(-1), which is on the future of $y_2(-3)$.
- (b) Given x(n) = nu(n), compute and plot $y_1(n)$ and $y_2(n)$ for $0 \le n \le 5$.

Solution:

	n	0	1	2	3	4	5
3	$y_1(n)$	0	1/4	3/4	6/4 = 3/2	10/4 = 5/2	14/4 = 7/2
3	$y_2(n)$	0	0	0	1	0	0

The corresponding plots are shown in Figure 1.

(c) Find the z-transform of $y_1(n)$ and $y_2(n)$ in terms of the z-transform of x(n).

Solution:

z-transform for
$$y_1(n) = \frac{1}{4} \sum_{k=n-3}^{n} x(k) = \frac{1}{4} [x(n-3) + x(n-2) + x(n-1) + x(n)]$$
 gives

$$Y_1(z) = \frac{1}{4} [z^{-3}X(z) + z^{-2}X(z) + z^{-1}X(z) + X(z)]$$
$$= \frac{z^{-3} + z^{-2} + z^{-1} + 1}{4}X(z).$$

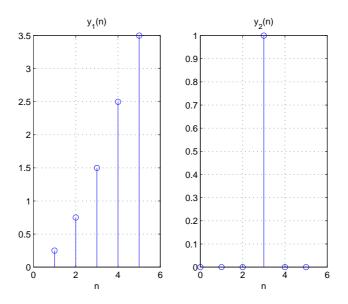


Figure 1: Plot for $y_1(n)$ and $y_2(n)$.

z-transform for $y_2(n)$ is given by

$$Y_2(z) = \sum_{n = -\infty}^{\infty} y_2(n)z^{-n}$$

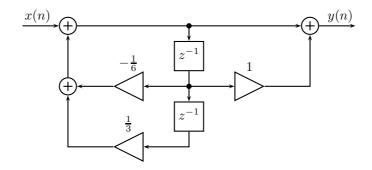
$$= \sum_{n = -\infty}^{\infty} x\left(\frac{n}{3}\right)z^{-n}$$

$$= \sum_{k = -\infty}^{\infty} x(k)z^{-3k}$$

$$= \sum_{k = -\infty}^{\infty} x(k)(z^3)^{-k}$$

$$= X(z^3).$$

2. A causal system is described by the following block diagram.



(a) Determine the constant coefficient difference equation that describes the system, and find its impulse response.

Solution:

Interchanging the order of the two systems in cascade, we get

$$y(n) = -\frac{1}{6}y(n-1) + \frac{1}{3}y(n-2) + x(n) + x(n-1).$$

The impulse response can be found by computing the zero-state response to $x(n) = \delta(n)$. We first find the homogeneous solution:

$$\lambda^2 + \frac{1}{6}\lambda - \frac{1}{3} = 0 \quad \Rightarrow \quad \lambda_1 = \frac{1}{2}, \quad \lambda_2 = -\frac{2}{3}$$

and hence,

$$y_h(n) = C_1 \left(\frac{1}{2}\right)^n + C_2 \left(-\frac{2}{3}\right)^n$$
, for all n .

Letting $x(n) = \delta(n)$ and assuming that the system is relaxed, we get y(0) = 1 and $y(1) = -\frac{1}{6}y(0) + 1 = \frac{5}{6}$. From the homogeneous solution we get

$$y(0) = C_1 + C_2 = 1$$
$$y(1) = \frac{1}{2}C_1 - \frac{2}{3}C_2 = \frac{5}{6}$$

and solving for C_1 and C_2 yields $C_1 = \frac{9}{7}$ and $C_2 = -\frac{2}{7}$, and consequently,

$$h(n) = \left[\frac{9}{7} \left(\frac{1}{2}\right)^n - \frac{2}{7} \left(-\frac{2}{3}\right)^n\right] u(n).$$

(b) Given $x(n) = n2^n u(-n)$, find the output of the system using the z-transform.

Solution:

The output y(n) when $x(n) = n2^n u(-n)$ can be found by computing the inverse z-transform of Y(z) = H(z)X(z). The z-transform of h(n) is readily found from the impulse response:

$$H(z) = \frac{1+z^{-1}}{1+\frac{1}{6}z^{-1}-\frac{1}{3}z^{-2}}, \text{ ROC: } |z| > \frac{2}{3}.$$

The z-transform of x(n) is given by

$$X(z) = \mathcal{Z}\{x(n)\} = -z\frac{d}{dz}\mathcal{Z}\{2^{n}u(-n)\} = -z\frac{d}{dz}\left[\sum_{n=-\infty}^{0} 2^{n}z^{-n}\right]$$
$$= -z\frac{d}{dz}\left[\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^{n}\right] = -z\frac{d}{dz}\left[\frac{1}{1 - \frac{1}{2}z}\right] = -\frac{2z}{(2 - z)^{2}}, \quad \text{ROC: } |z| < 2.$$

Consequently, Y(z) is given by

$$Y(z) = H(z)X(z) = \frac{-2z^3 - 2z^2}{(z - \frac{1}{2})(z + \frac{2}{2})(z - 2)^2}, \text{ ROC: } \frac{2}{3} < |z| < 2.$$

Using partial fraction expansion, we get

$$\frac{Y(z)}{z} = \frac{A}{z - \frac{1}{2}} + \frac{B}{z + \frac{2}{2}} + \frac{C}{z - 2} + \frac{D}{(z - 2)^2}$$

where

$$A = \left(z - \frac{1}{2}\right) \frac{Y(z)}{z} \Big|_{z=\frac{1}{2}} = -\frac{4}{7}$$

$$B = \left(z + \frac{2}{3}\right) \frac{Y(z)}{z} \Big|_{z=-\frac{2}{3}} = -\frac{3}{56}$$

$$C = \frac{d}{dz} \left[(z - 2)^2 \frac{Y(z)}{z} \right] \Big|_{z=2} = \frac{5}{8}$$

$$D = (z - 2)^2 \frac{Y(z)}{z} \Big|_{z=2} = -3.$$

Thus,

$$Y(z) = -\frac{4}{7} \frac{z}{z - \frac{1}{2}} - \frac{3}{56} \frac{z}{z + \frac{2}{3}} + \frac{5}{8} \frac{z}{z - 2} - \frac{3}{2} \frac{2z}{(z - 2)^2}$$

and since the ROC of Y(z) is given by $\frac{2}{3} < |z| < 2$, we get

$$\frac{z}{z - \frac{1}{2}} \quad \leftrightarrow \quad \left(\frac{1}{2}\right)^n u(n)$$

$$\frac{z}{z + \frac{2}{3}} \quad \leftrightarrow \quad \left(-\frac{2}{3}\right)^n u(n)$$

$$\frac{z}{z - 2} \quad \leftrightarrow \quad -2^n u(-n - 1)$$

$$\frac{2z}{(z - 2)^2} \quad \leftrightarrow \quad -n2^n u(-n - 1)$$

and consequently,

$$y(n) = \left[-\frac{4}{7} \left(\frac{1}{2} \right)^n - \frac{3}{56} \left(-\frac{2}{3} \right)^n \right] u(n) + \left[-\frac{5}{8} + \frac{3}{2} n \right] 2^n u(-n-1).$$

Alternatively, partial fraction expansion on Y(z) yields

$$y(n) = \left[-\frac{2}{7} \left(\frac{1}{2} \right)^{n-1} + \frac{1}{28} \left(-\frac{2}{3} \right)^{n-1} \right] u(n-1) + \left[-\frac{5}{4} + 3n \right] 2^{n-1} u(-n).$$

3. The difference equation of a relaxed system is:

$$y(n) + 0.5y(n-1) - 0.14y(n-2) = x(n)$$

(a) Find a closed form for the impulse response h(n) (i.e., the zero state system output when the input is an impulse).

Solution:

By setting $x(n) = \delta(n)$, we have

$$h(n) + 0.5h(n-1) - 0.14h(n-2) = \delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0. \end{cases}$$

Hence, for $n \geq 1$, h(n) can be found by solving homogeneous difference equation

$$h(n) + 0.5h(n-1) - 0.14h(n-2) = 0. (1)$$

The characteristic polynomial for (1) can be solved by

$$\left(\lambda + \frac{7}{10}\right) \left(\lambda - \frac{1}{5}\right) = 0,$$

thus, the modes are

$$\lambda_1 = -\frac{7}{10}, \quad \lambda_2 = \frac{1}{5}.$$

Hence.

$$h(n) = C_1 \left(-\frac{7}{10}\right)^n + C_2 \left(\frac{1}{5}\right)^n, \quad n \ge 0.$$

Since the system is relaxed, y(-1) = h(-1) = 0 and $h(0) = \delta(0) = 1$, which gives

$$C_1 = \frac{7}{9}, \quad C_2 = \frac{2}{9}.$$

Therefore.

$$h(n) = \left[\frac{7}{9} \left(-\frac{7}{10}\right)^n + \frac{2}{9} \left(\frac{1}{5}\right)^n\right] u(n).$$

(b) If the input to the system is $x(n) = 2\delta(n) + \delta(n-2)$, what is the output?

Solution:

The output y(n) of the system can be expressed as the convolution of x(n) and h(n), i.e.,

6

$$y(n) = x(n) * h(n)$$

= $[2\delta(n) + \delta(n-2)] * h(n)$
= $2h(n) + h(n-2)$.

Hence, using h(n) in part (a) gives us i) $n \geq 2$,

$$\begin{split} y(n) &= 2h(n) + h(n-2) \\ &= 2\left[\frac{7}{9}\left(-\frac{7}{10}\right)^n + \frac{2}{9}\left(\frac{1}{5}\right)^n\right]u(n) + \left[\frac{7}{9}\left(-\frac{7}{10}\right)^{n-2} + \frac{2}{9}\left(\frac{1}{5}\right)^{n-2}\right]u(n-2) \\ &= \left[2 \cdot \frac{7}{9} + \frac{7}{9} \cdot \left(\frac{7}{10}\right)^{-2}\right]\left(-\frac{7}{10}\right)^n + \left[2 \cdot \frac{2}{9} + \frac{2}{9} \cdot \left(\frac{1}{5}\right)^{-2}\right]\left(\frac{1}{5}\right)^n \\ &= \frac{22}{7}\left(-\frac{7}{10}\right)^n + 6\left(\frac{1}{5}\right)^n. \end{split}$$

ii) $0 \le n \le 1$,

$$\begin{split} y(n) &= 2h(n) \\ &= 2\left[\frac{7}{9}\left(-\frac{7}{10}\right)^n + \frac{2}{9}\left(\frac{1}{5}\right)^n\right]u(n) \\ &= \frac{14}{9}\left(-\frac{7}{10}\right)^n + \frac{4}{9}\left(\frac{1}{5}\right)^n. \end{split}$$

Therefore.

$$y(n) = \begin{cases} 0, & n < 0, \\ \frac{14}{9} \left(-\frac{7}{10} \right)^n + \frac{4}{9} \left(\frac{1}{5} \right)^n, & n = 0, 1, \\ \frac{22}{7} \left(-\frac{7}{10} \right)^n + 6 \left(\frac{1}{5} \right)^n, & n \ge 2. \end{cases}$$

(c) For what values of α is $g(n) = \alpha^n h(n)$ a finite energy sequence?

Solution:

The energy E_g of g(n) is given by

$$E_g = \sum_{n=-\infty}^{\infty} |g(n)|^2$$

$$= \sum_{n=-\infty}^{\infty} |\alpha^n h(n)|^2$$

$$= \sum_{n=0}^{\infty} \left| \alpha^n \left\{ \frac{7}{9} \left(-\frac{7}{10} \right)^n + \frac{2}{9} \left(\frac{1}{5} \right)^n \right\} \right|^2$$

$$= \sum_{n=0}^{\infty} \left| \frac{7}{9} \left(-\frac{7}{10} \alpha \right)^n + \frac{2}{9} \left(\frac{1}{5} \alpha \right)^n \right|^2$$

$$= \sum_{n=0}^{\infty} \frac{49}{81} \left(\frac{49}{100} \alpha^2 \right)^n + \sum_{n=0}^{\infty} \frac{4}{81} \left(\frac{1}{25} \alpha^2 \right)^n + \sum_{n=0}^{\infty} \frac{28}{81} \left(-\frac{7}{50} \alpha^2 \right)^n.$$

Thus, for the energy to be finite,

$$\left| \frac{49}{100} \alpha^2 \right| < 1, \quad \left| \frac{1}{25} \alpha^2 \right| < 1, \text{ and } \left| \frac{7}{50} \alpha^2 \right| < 1,$$

or equivalently,

$$|\alpha| < \frac{10}{7}$$
, $|\alpha| < 5$, and $|\alpha| < \sqrt{\frac{50}{7}}$.

Hence, α should satisfy $|\alpha| < \frac{10}{7}$.

1. Consider the following two systems

$$y_1(n) = \frac{1}{4} \sum_{k=n-3}^{n} x(k),$$

$$y_2(n) = \begin{cases} x\left(\frac{n}{3}\right) & n = 3k, k \text{ integer} \\ 0 & n \neq 3k, k \text{ integer}. \end{cases}$$

(a) Determine whether the systems are linear, time-invariant, relaxed, BIBO stable, and causal. Justify your answer to receive full credit.

Solution:

Properties	$y_1(n)$	$y_2(n)$
Relaxed	Yes	No
Linear	Yes	Yes
Time-Invariant	Yes	No
BIBO Stable	Yes	Yes
Causal	Yes	No

- System $y_1(n)$:
 - $y_1(n) = \frac{1}{4} \sum_{k=n-3}^n x(k) = \frac{1}{4} [x(n-3) + x(n-2) + x(n-1) + x(n)]$ can be considered as a relaxed constant coefficient difference equation. It is relaxed, linear, time-invariant, BIBO stable, and causal.
- System $y_2(n)$:
 - · Not relaxed: Counter example: if the first non-zero sample of x(n) is at n = -1, then $y_2(-3)$ will be non-zero, which is before -1.
 - · Linear: Let two outputs be

$$y_2^a(n) = \begin{cases} x_a\left(\frac{n}{3}\right) & n = 3k, k \text{ integer} \\ 0 & n \neq 3k, k \text{ integer.} \end{cases},$$

and

$$y_2^b(n) = \begin{cases} x_b\left(\frac{n}{3}\right) & n = 3k, k \text{ integer} \\ 0 & n \neq 3k, k \text{ integer.} \end{cases},$$

for an input $x_a(n)$ and $x_b(n)$, respectively. The output y(n) for an input $Ax_a(n) + Bx_b(n)$ with some constants A and B is given by

i) if n = 3k, k integer,

$$y(n) = Ax_a\left(\frac{n}{3}\right) + Bx_b\left(\frac{n}{3}\right)$$
$$= Ay_2^a(n) + By_2^b(n).$$

ii) if $n \neq 3k$, k integer,

$$y(n) = 0.$$

Based on i) and ii), y(n) for an input $Ax_a(n) + Bx_b(n)$ is

$$y(n) = Ay_2^a(n) + By_2^b(n),$$

which implies that system $y_2(n)$ is linear.

· BIBO Stable: For a bounded sequence $|x(n)| \le M < \infty$ with a finite positive number M,

$$|y_2(n)| = \begin{cases} |x\left(\frac{n}{3}\right)| \le M < \infty & n = 3k, k \text{ integer} \\ 0 < \infty & n \ne 3k, k \text{ integer.} \end{cases}$$

implying that $|y_2(n)|$ is bounded output.

- · Not Time-Invariant: Consider inputs $\delta(n)$ and $\delta(n-1)$. The outputs are $\delta(n)$ and $\delta(n-3)$. This shows that $y_2(n)$ is not time-invariant.
- · Not causal: For example, $y_2(-3)$ depends on x(-1), which is on the future of $y_2(-3)$.
- (b) Given x(n) = nu(n), compute and plot $y_1(n)$ and $y_2(n)$ for $0 \le n \le 5$.

Solution:

	n	0	1	2	3	4	5
3	$y_1(n)$	0	1/4	3/4	6/4 = 3/2	10/4 = 5/2	14/4 = 7/2
3	$y_2(n)$	0	0	0	1	0	0

The corresponding plots are shown in Figure 1.

(c) Find the z-transform of $y_1(n)$ and $y_2(n)$ in terms of the z-transform of x(n).

Solution:

z-transform for
$$y_1(n) = \frac{1}{4} \sum_{k=n-3}^{n} x(k) = \frac{1}{4} [x(n-3) + x(n-2) + x(n-1) + x(n)]$$
 gives

$$Y_1(z) = \frac{1}{4} [z^{-3}X(z) + z^{-2}X(z) + z^{-1}X(z) + X(z)]$$
$$= \frac{z^{-3} + z^{-2} + z^{-1} + 1}{4}X(z).$$

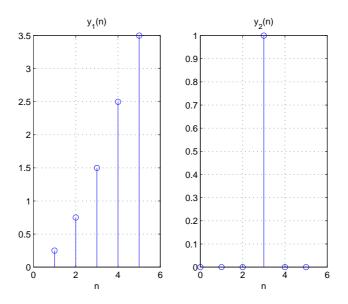


Figure 1: Plot for $y_1(n)$ and $y_2(n)$.

z-transform for $y_2(n)$ is given by

$$Y_2(z) = \sum_{n = -\infty}^{\infty} y_2(n)z^{-n}$$

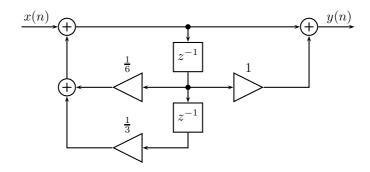
$$= \sum_{n = -\infty}^{\infty} x\left(\frac{n}{3}\right)z^{-n}$$

$$= \sum_{k = -\infty}^{\infty} x(k)z^{-3k}$$

$$= \sum_{k = -\infty}^{\infty} x(k)(z^3)^{-k}$$

$$= X(z^3).$$

2. A causal system is described by the following block diagram.



(a) Determine the constant coefficient difference equation that describes the system, and find its impulse response.

Solution:

Interchanging the order of the two systems in cascade, we get

$$y(n) = \frac{1}{6}y(n-1) + \frac{1}{3}y(n-2) + x(n) + x(n-1).$$

The impulse response can be found by computing the zero-state response to $x(n) = \delta(n)$. We first find the homogeneous solution:

$$\lambda^2 - \frac{1}{6}\lambda - \frac{1}{3} = 0 \quad \Rightarrow \quad \lambda_1 = -\frac{1}{2}, \quad \lambda_2 = \frac{2}{3}$$

and hence,

$$y_h(n) = C_1 \left(-\frac{1}{2}\right)^n + C_2 \left(\frac{2}{3}\right)^n$$
, for all n .

Letting $x(n) = \delta(n)$ and assuming that the system is relaxed, we get y(0) = 1 and $y(1) = \frac{1}{6}y(0) + 1 = \frac{7}{6}$. From the homogeneous solution we get

$$y(0) = C_1 + C_2 = 1$$

$$y(1) = -\frac{1}{2}C_1 + \frac{2}{3}C_2 = \frac{7}{6}$$

and solving for C_1 and C_2 yields $C_1 = -\frac{3}{7}$ and $C_2 = \frac{10}{7}$, and consequently,

$$h(n) = \left[-\frac{3}{7} \left(-\frac{1}{2} \right)^n + \frac{10}{7} \left(\frac{2}{3} \right)^n \right] u(n).$$

(b) Given $x(n) = n2^n u(-n)$, find the output of the system using the z-transform.

Solution:

The output y(n) when $x(n) = n2^n u(-n)$ can be found by computing the inverse z-transform of Y(z) = H(z)X(z). The z-transform of h(n) is readily found from the impulse response:

$$H(z) = \frac{1+z^{-1}}{1-\frac{1}{6}z^{-1}-\frac{1}{3}z^{-2}}, \text{ ROC: } |z| > \frac{2}{3}.$$

The z-transform of x(n) is given by

$$X(z) = \mathcal{Z}\{x(n)\} = -z\frac{d}{dz}\mathcal{Z}\{2^{n}u(-n)\} = -z\frac{d}{dz}\left[\sum_{n=-\infty}^{0} 2^{n}z^{-n}\right]$$
$$= -z\frac{d}{dz}\left[\sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^{n}\right] = -z\frac{d}{dz}\left[\frac{1}{1 - \frac{1}{2}z}\right] = -\frac{2z}{(2 - z)^{2}}, \quad \text{ROC: } |z| < 2.$$

Consequently, Y(z) is given by

$$Y(z) = H(z)X(z) = \frac{-2z^3 - 2z^2}{(z + \frac{1}{2})(z - \frac{2}{3})(z - 2)^2}, \text{ ROC: } \frac{2}{3} < |z| < 2.$$

Using partial fraction expansion, we get

$$\frac{Y(z)}{z} = \frac{-2z^2 - 2z}{(z + \frac{1}{2})(z - \frac{2}{3})(z - 2)^2} = \frac{A}{z + \frac{1}{2}} + \frac{B}{z - \frac{2}{3}} + \frac{C}{z - 2} + \frac{D}{(z - 2)^2}$$

where

$$A = \left(z + \frac{1}{2}\right) \frac{Y(z)}{z} \Big|_{z = -\frac{1}{2}} = -\frac{12}{175}$$

$$B = \left(z - \frac{2}{3}\right) \frac{Y(z)}{z} \Big|_{z = \frac{2}{3}} = -\frac{15}{14}$$

$$C = \frac{d}{dz} \left[(z - 2)^2 \frac{Y(z)}{z} \right] \Big|_{z = 2} = \frac{57}{50}$$

$$D = (z - 2)^2 \frac{Y(z)}{z} \Big|_{z = 2} = -\frac{18}{5}.$$

Thus,

$$Y(z) = -\frac{12}{175} \frac{z}{z + \frac{1}{2}} - \frac{15}{14} \frac{z}{z - \frac{2}{2}} + \frac{57}{50} \frac{z}{z - 2} - \frac{9}{5} \frac{2z}{(z - 2)^2}$$

and since the ROC of Y(z) is given by $\frac{2}{3} < |z| < 2$, we get

$$\frac{z}{z + \frac{1}{2}} \quad \leftrightarrow \quad \left(-\frac{1}{2}\right)^n u(n)$$

$$\frac{z}{z - \frac{2}{3}} \quad \leftrightarrow \quad \left(\frac{2}{3}\right)^n u(n)$$

$$\frac{z}{z - 2} \quad \leftrightarrow \quad -2^n u(-n - 1)$$

$$\frac{2z}{(z - 2)^2} \quad \leftrightarrow \quad -n2^n u(-n - 1)$$

and consequently,

$$y(n) = \left[-\frac{12}{175} \left(-\frac{1}{2} \right)^n - \frac{15}{14} \left(\frac{2}{3} \right)^n \right] u(n) + \left[-\frac{57}{50} + \frac{9}{5} n \right] 2^n u(-n-1).$$

Alternatively, partial fraction expansion on Y(z) yields

$$y(n) = \left[\frac{6}{175} \left(-\frac{1}{2} \right)^{n-1} - \frac{5}{7} \left(\frac{2}{3} \right)^{n-1} \right] u(n-1) + \left[-\frac{57}{25} + \frac{18}{5} n \right] 2^{n-1} u(-n).$$

3. The difference equation of a relaxed system is:

$$y(n) + 0.5y(n-1) - 0.14y(n-2) = x(n)$$

(a) Find a closed form for the impulse response h(n) (i.e., the zero state system output when the input is an impulse).

Solution:

By setting $x(n) = \delta(n)$, we have

$$h(n) + 0.5h(n-1) - 0.14h(n-2) = \delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0. \end{cases}$$

Hence, for $n \geq 1$, h(n) can be found by solving homogeneous difference equation

$$h(n) + 0.5h(n-1) - 0.14h(n-2) = 0. (1)$$

The characteristic polynomial for (1) can be solved by

$$\left(\lambda + \frac{7}{10}\right) \left(\lambda - \frac{1}{5}\right) = 0,$$

thus, the modes are

$$\lambda_1 = -\frac{7}{10}, \quad \lambda_2 = \frac{1}{5}.$$

Hence.

$$h(n) = C_1 \left(-\frac{7}{10}\right)^n + C_2 \left(\frac{1}{5}\right)^n, \quad n \ge 0.$$

Since the system is relaxed, y(-1) = h(-1) = 0 and $h(0) = \delta(0) = 1$, which gives

$$C_1 = \frac{7}{9}, \quad C_2 = \frac{2}{9}.$$

Therefore.

$$h(n) = \left[\frac{7}{9} \left(-\frac{7}{10}\right)^n + \frac{2}{9} \left(\frac{1}{5}\right)^n\right] u(n).$$

(b) If the input to the system is $x(n) = 2\delta(n) + \delta(n-2)$, what is the output?

Solution:

The output y(n) of the system can be expressed as the convolution of x(n) and h(n), i.e.,

6

$$y(n) = x(n) * h(n)$$

= $[2\delta(n) + \delta(n-2)] * h(n)$
= $2h(n) + h(n-2)$.

Hence, using h(n) in part (a) gives us i) $n \geq 2$,

$$\begin{split} y(n) &= 2h(n) + h(n-2) \\ &= 2\left[\frac{7}{9}\left(-\frac{7}{10}\right)^n + \frac{2}{9}\left(\frac{1}{5}\right)^n\right]u(n) + \left[\frac{7}{9}\left(-\frac{7}{10}\right)^{n-2} + \frac{2}{9}\left(\frac{1}{5}\right)^{n-2}\right]u(n-2) \\ &= \left[2 \cdot \frac{7}{9} + \frac{7}{9} \cdot \left(\frac{7}{10}\right)^{-2}\right]\left(-\frac{7}{10}\right)^n + \left[2 \cdot \frac{2}{9} + \frac{2}{9} \cdot \left(\frac{1}{5}\right)^{-2}\right]\left(\frac{1}{5}\right)^n \\ &= \frac{22}{7}\left(-\frac{7}{10}\right)^n + 6\left(\frac{1}{5}\right)^n. \end{split}$$

ii) $0 \le n \le 1$,

$$\begin{split} y(n) &= 2h(n) \\ &= 2\left[\frac{7}{9}\left(-\frac{7}{10}\right)^n + \frac{2}{9}\left(\frac{1}{5}\right)^n\right]u(n) \\ &= \frac{14}{9}\left(-\frac{7}{10}\right)^n + \frac{4}{9}\left(\frac{1}{5}\right)^n. \end{split}$$

Therefore.

$$y(n) = \begin{cases} 0, & n < 0, \\ \frac{14}{9} \left(-\frac{7}{10} \right)^n + \frac{4}{9} \left(\frac{1}{5} \right)^n, & n = 0, 1, \\ \frac{22}{7} \left(-\frac{7}{10} \right)^n + 6 \left(\frac{1}{5} \right)^n, & n \ge 2. \end{cases}$$

(c) For what values of α is $g(n) = \alpha^n h(n)$ a finite energy sequence?

Solution:

The energy E_g of g(n) is given by

$$E_g = \sum_{n=-\infty}^{\infty} |g(n)|^2$$

$$= \sum_{n=-\infty}^{\infty} |\alpha^n h(n)|^2$$

$$= \sum_{n=0}^{\infty} \left| \alpha^n \left\{ \frac{7}{9} \left(-\frac{7}{10} \right)^n + \frac{2}{9} \left(\frac{1}{5} \right)^n \right\} \right|^2$$

$$= \sum_{n=0}^{\infty} \left| \frac{7}{9} \left(-\frac{7}{10} \alpha \right)^n + \frac{2}{9} \left(\frac{1}{5} \alpha \right)^n \right|^2$$

$$= \sum_{n=0}^{\infty} \frac{49}{81} \left(\frac{49}{100} \alpha^2 \right)^n + \sum_{n=0}^{\infty} \frac{4}{81} \left(\frac{1}{25} \alpha^2 \right)^n + \sum_{n=0}^{\infty} \frac{28}{81} \left(-\frac{7}{50} \alpha^2 \right)^n.$$

Thus, for the energy to be finite,

$$\left| \frac{49}{100} \alpha^2 \right| < 1, \quad \left| \frac{1}{25} \alpha^2 \right| < 1, \text{ and } \left| \frac{7}{50} \alpha^2 \right| < 1,$$

or equivalently,

$$|\alpha| < \frac{10}{7}$$
, $|\alpha| < 5$, and $|\alpha| < \sqrt{\frac{50}{7}}$.

Hence, α should satisfy $|\alpha| < \frac{10}{7}$.