MIDTERM EXAMINATION

(Closed Book - 50 pts)

1. (22 pts) Consider the following two systems

$$
y_1(n) = \frac{1}{3} \sum_{k=n-2}^{n} x(k)
$$
 (1)

$$
y_2(n) = \begin{cases} x\left(\frac{n}{2}\right), & \text{when n is even;} \\ 0, & \text{when n is odd.} \end{cases}
$$
 (2)

- (a) (10 pts) Determine whether the systems are linear, time-invariant, relaxed, BIBO stable, and causal. Clearly state your justifications to receive full credit.
- (b) (6 pts) Given $x(n) = (n+1)u(n)$, compute and plot $y_1(n)$ and $y_2(n)$ for $0 \le n \le 5$.
- (c) (6 pts) Find the Z-transform of $y_1(n)$ and $y_2(n)$ in terms of $X(z)$.
- (a) answer: The first system is LTI. Notice that $y(n) = h(n) * x(n)$, where $h(n) = \frac{1}{3}(\delta(n) + \delta(n 1) + \delta(n-2)$.

The system is relaxed since $y(n) = 0$ when $x(n) = 0$.

The system is BIBO stable since if $|x(n)| < M$ for all n , $|y(n)| = |\frac{1}{3}(x(n) + x(n-1) + x(n-2))|$ $\frac{1}{3}(M + M + M) = 3M.$

The system is causal since $y(n)$ depends only on current and past inputs of $x(n)$.

The second system is linear. For $\alpha x_a(n) + \beta x_b(n)$, the odd samples will still be mapped to 0, while the even samples will be $y(n) = \alpha x_a(\frac{n}{2}) + \beta x_b(\frac{n}{2}) = \alpha y_a(n) + \beta y_b(n)$. The system is NOT time invariant. Note that $y_1(n) = S[x(n-1)]$ returns $x(\frac{n-1}{2})$ when n is odd,

but $y(n-1) = 0$ when n is odd.

The system is not relaxed. If $x(-1) = 1$, then $y(-2) = 1$.

The system is BIBO stable. $|y(n)| = |x(n/2)| < M$.

The system is not causal. If $x(n) = u(n + 1)$, $y(-2) = 1$, so $y(n)$ becomes non-zero before $x(n)$ becomes non-zero.

(c) answer:

$$
Y_1(z) = \frac{1}{3}(X_1(z) + z^{-1}X_1(z) + z^{-2}X_1(z))
$$

$$
Y_2(z) = \sum_{n=-\infty}^{\infty} y_2(n) z^{-n}
$$

=
$$
\sum_{k=-\infty}^{\infty} x_2(k) z^{-2k}
$$

=
$$
\sum_{k=-\infty}^{\infty} x_2(k) (z^2)^{-k}
$$

=
$$
X(z^2)
$$

Figure 1: System block diagram.

- 2. (16 pts) A relaxed causal system is described by the block diagram above.
	- (a) (6 pts) Determine the constant coefficient difference equation that describes this system, and find its impulse response.
	- (b) (6 pts) given $x(n) = n2^n u(-n)$, find the output of the system using Z-transform.
	- (c) (4 pts) Determine the energy of the output sequence.
	- (a) answer: $y(n) \frac{3}{2}y(n-1) + \frac{1}{2}y(n-2) = x(n) + x(n-1)$. There are two ways to find $h(n)$, either by finding the transfer function or by evaluating directly with $\delta(n)$ as the input.

The transfer function method:

$$
Y(z) - \frac{3}{2}z^{-1}Y(z) + \frac{1}{2}z^{-2}Y(z) = X(z) + z^{-1}X(z)
$$

\n
$$
Y(z)(1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}) = X(z)(1 + z^{-1})
$$

\n
$$
H(z) = Y(z)/X(z) = \frac{1 + z^{-1}}{1 - \frac{3}{2}z^{-1} + \frac{1}{2}z^{-2}}
$$

\n
$$
= z\left(\frac{z + 1}{z^2 - \frac{3}{2}z + \frac{1}{2}}\right)
$$

\n
$$
= z\left(\frac{4}{z - 1} + \frac{-3}{z - \frac{1}{2}}\right)
$$

The inverse transform for $H(z)$ is $h(n) = 4u(n) - 3\left(\frac{1}{2}\right)^n u(n)$.

Solving it using homogeneous equations would require first the modes $\lambda = 1$ and $\lambda = 1/2$.

Using initial conditions at $n = 0$ and $n = 1$, since the equation becomes homogeneous at $n = 2$, we get:

$$
y(0) = \delta(0) = 1 = C_1 + C_2
$$

$$
y(1) = \frac{3}{2}y(0) + \delta(0) = \frac{5}{2} = C_1 + \frac{1}{2}C_2
$$

We end up with $C_1 = 4$ and $C_2 = -3$, which agrees with the transfer function method.

(b) answer: $x(n) = n2^n u(-n) = n2^n u(-n-1)$ since $x(0) = 0$. Hence, the Z-transform is:

$$
X(z) = \frac{-2z}{(z-2)^2} \text{for} |z| < 2
$$

So $Y(z) = H(z)X(z) = \frac{-2z(z+1)}{(z-1)(z-\frac{1}{2})(z-2)^2}$ without pole-zero cancellation, hence the ROC is the intersection of the ROCs of $H(z)$ and $X(z)$, which is $1 < |z| < 2$. Removing a factor of z from the numerator and using partial fractions, we get:

$$
Y(z) = -\frac{8z}{z-1} + \frac{8z}{3(z-\frac{1}{2})} + \frac{4z}{3(z-2)} - \frac{8z}{(z-2)^2}
$$

Given our region of convergence, this gives us:

$$
y(n) = -8u(n) + \frac{8}{3} \left(\frac{1}{2}\right)^n u(n) - \frac{4}{3} 2^n u(-n-1) + 4n2^n u(-n-1)
$$

(c) answer: The answer is ∞. To see this, simply notice that there is a non-zero coefficient in front of the $u(n)$ term. All other terms go to 0 as n goes to ∞ , hence the sequence will approach 8 as $n \to \infty$.

Although not necessary for the answer to this problem, we show a way to verify this using ztransforms. Let us define $w(n) = y^2(n)$. Since $y(n)$ is a real sequence, $\sum_{n=-\infty}^{\infty} w(n) = \varepsilon_y$ $W(1)$.

$$
w(n) = \left[\frac{64}{9}\left(\frac{1}{4}\right)^n - \frac{128}{3}\left(\frac{1}{2}\right)^n + 64\right]u(n) + \left[\frac{16}{9}4^n - \frac{32}{3}n4^n + 16n^24^n\right]u(-n-1)
$$

Using z-transform properties, we get:

$$
W(z)=\frac{64z}{9(z-\frac{1}{4})}-\frac{128z}{3(z-\frac{1}{2})}+\frac{64z}{z-1}-\frac{16}{9(z-4)}+\frac{128z}{3(z-4)^2}-z\frac{-16z-64}{(z-4)^3}
$$

The term with $z - 1$ in the denominator will go to ∞ when $z = 1$. Hence, the energy is ∞ .

- 3. (12 pts) Given the plots (a-f), determine which one corresponds to each of the sequences below.
	- (a) $(4 \text{ pts}) x_1(n) = a2^n u(-n-10) + b3^{n-3} u(-n+100)$
	- (b) $(4 \text{ pts}) x_1(n) = a3^n u(-n-10) + b2^{n-3} u(n+100)$
	- (c) $(4 \text{ pts}) x_1(n) = a2^n u(n-10) + bu(n+100)$

- (a) answer: c. Because the sequence includes a finite number of non-zero terms for positive values of *n*, the z-transform does not converge at $z = 0$.
- (b) answer: b, $2 < |z| < 3$. The sequence is just a linear combination of shifted versions of $3^n u(-n-1)$ and $2^n u(n)$.
- (c) answer: f, $2 < |z| < \infty$. This is because there are non-zero terms where $n < 0$.