
EE113: Digital Signal Processing Spring 2011
Solution to Final Exam (Version A)

1. Problem 1

(a) Since y(n) = x2(n), we have Y (ejω) = X(ejω) ∗ X(ejω). Hence,
Y (ejω) will occupy twice the frequency band that X(ejω) does.
To get yc(n) = x2

c(n), the highest frequency of yc(n) is 0.5/T =
5000 Hz. Consequently, the highest frequency of xc(n) is 2500
Hz, or π × 5000 rads/second.

(b) The magnitude response is

∣∣H(ejω)
∣∣ = √

2− 2 cos(ω − ω0) ·
√

2− 2 cos(ω + ω0)√
1.81− 1.8 cos(ω − ω0) ·

√
1.81− 1.8 cos(ω + ω0)

.

The phase response is

∠H(ejω) = tan−1

(
sin(ω − ω0)

1− cos(ω − ω0)

)
+ tan−1

(
sin(ω + ω0)

1− cos(ω + ω0)

)
− tan−1

(
0.9 sin(ω − ω0)

1− 0.9 cos(ω − ω0)

)
− tan−1

(
0.9 sin(ω + ω0)

1− 0.9 cos(ω + ω0)

)
.

(c) Since f = 60 Hz in frequency domain corresponds to Ω = 2πf =
2π × 60 rads/second in angular frequency domain, we have

ω = ΩT = 2π × 60× 10−4 =
3π

250

in the transform domain of DTFT.
To filter the 60Hz out, we need

|H(ejω)|
∣∣
ω= 3π

250
= 0,

which holds true if

cos(ω − ω0)|ω= 3π
250

= 1.

Hence, we have ω0 = 3π
250 .



2. Problem 2

(a) H1(ejw) corresponds to a frequency shifted version of Hlp(ejω),
specifically:

H1(ejw) = Hlp(ej(w−π))

Thus, we have

H1(ejw) =

{
0, |w| ≤ 0.8π

1, 0.8π < |w| ≤ π

This is a highpass filter.

(b) H2(ejw) corresponds to a frequency modulated version of Hlp(ejω),
specifically:

H2(ejw) = Hlp(ejw) ∗ (δ(w − 0.5π) + δ(w + 0.5π)), |w| ≤ π

Thus, we have

H2(ejw) =


0, |w| ≤ 0.3π

1, 0.3π < |w| < 0.7π

0, 0.7π ≤ |w| ≤ π

This is a bandpass filter.

(c) H3(ejw) corresponds to a periodic convolution of Hlp(ejω) with
another lowpass filter, specifically:

H3(ejw) =
1
2π

∫ π

−π
H(ejθ)Hlp(ej(w−θ))dθ

where H(ejw) is given by

H(ejw) =

{
1, |w| < 0.1π

0, 0.1π ≤ |w| ≤ π

Carrying out the convolution, we get

H3(ejw) =


0.1, |w| < 0.1π

− |w|
2π + 0.15, 0.1π ≤ |w| ≤ 0.3π

0, 0.3π < |w| ≤ π

This is lowpass filter.
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(d) The energy of h3(n) is computed using Parseval theorem

E=
1
2π

∫ π

−π
|H3(ejw)|2dw

=
1
2π

(∫ 0.1π

−0.1π
(0.1)2 + 2

(∫ 0.3π

0.1π
(0.152 − 0.3

2π
w +

1
4π2

w2)dw
))

The answer is considered to be complete up to the above equality.
Further calculation gives us the energy of h3(n) as 0.005.
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3. Problem 3. Let h(n) = δ(n)− 1
2δ(n− n0)

(a) The Z-transform of h(n)

H(z) =
∞∑

n=−∞
h(n)z−n

= 1− 1
2
z−n0

The N -point DFT of h(n) with N = 4n0 is

H(k) =
4n0−1∑
n=0

h(n)e−j 2πkn
4n0 , 0 ≤ k ≤ 4n0 − 1

= 1− 1
2
e−j(π/2)k

(b) The impulse response of hi(n) is

Hi(z) =
1

1− 1/2z−n0
, |z| >

(1
2

)−n0

hi(n) =
∞∑

k=0

(1
2

)n/n0

δ(n− kn0)

This is IIR filter, so infinite duration.
(c)

G(k) =
1

H(k)
=

1
1− 1

2e−j(π/2)k
, 0 ≤ k ≤ 4n0 − 1

The impulse response, g(n) is just hi(n) time-aliased by 4n0

points

g(n) =
(
1 +

1
16

+
1

256
+ . . .

)
δ(n) +

(1
2

+
1
32

+
1

512
+ . . .

)
δ(n− n0)

+
(1

4
+

1
64

+
1

1024
+ . . .

)
δ(n− 2n0) +

(1
8

+
1

128
+

1
2048

+ . . .
)
δ(n− 3n0)

=
16
15

δ(n) +
8
15

δ(n− n0) +
4
15

δ(n− 2n0) +
2
15

δ(n− 3n0)

(d)

y(n) = g(n) ∗ h(n) =
16
15

δ(n) +
8
15

δ(n− n0) +
4
15

δ(n− 2n0) +
2
15

δ(n− 3n0)

− 8
15

δ(n− n0)−
4
15

δ(n− 2n0)−
2
15

δ(n− 3n0)−
1
15

δ(n− 4n0)

=
16
15

δ(n)− 1
15

δ(n− 4n0)
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Since y(n) 6= δ(n), we cannot perfectly recover x(n) from y(n)
using g(n).
Indeed,

G(k)H(k) = 1, 0 ≤ k ≤ 4n0 − 1

However, this relationship is only true at 4n0 distinct frequencies.
This fact does not imply that for all frequencies w:

G(ejw)H(ejw) = 1
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4. Problem 4 Let x(n) = 0, n < 0, n > 7 be a real eight-point sequence
and let X(k) be its eight-point DFT

(a)
1
8

7∑
k=0

X(k)ej(2π/8)k×9 =
1
8

7∑
k=0

X(k)ej(2π/8)k×1 = x(1)

(b)

V (k) = X(z)
∣∣∣
z=2ej(2πk+π)/8

=
n=∞∑

n=−∞
x(n)z−n

∣∣∣
z=2ej(2πk+π)/8

=
n=7∑
n=0

x(n)z−n
∣∣∣
z=2ej(2πk+π)/8

=
n=7∑
n=0

x(n)(2ejπ/8)−ne−j 2πk
8

n

=
n=7∑
n=0

v(n)e−j 2πk
8

n

Thus, we have
v(n) = x(n)(2ejπ/8)−n

(c)

w(n) =
1
4

3∑
k=0

W (k)ej 2πkn
4

=
1
4

3∑
k=0

(X(k) + X(k + 4))ej 2π
4

kn

=
1
4

3∑
k=0

X(k)ej 2π
4

kn +
1
4

3∑
k=0

X(k + 4)ej 2π
4

kn

=
1
4

3∑
k=0

X(k)ej 2π
4

kn +
1
4

7∑
k=4

X(k)ej 2π
4

kn

=
1
4

7∑
k=0

X(k)ej 2π
4

k2n

= 2x(2n)
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Thus,
w(n) = 2x(2n)

(d) Note that Y (k) can be written as

Y (k) = X(k) + (−1)kX(k)

= X(k) + e−j 2πk4
8 X(k)

Using DFT properties, we have

y(n) = x(n) + x((n− 4)mod 8)
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EE113: Digital Signal Processing Spring 2011
Solution to Final Exam (Version B)

1. Problem 1 Let x(n) = 0, n < 0, n > 7 be a real eight-point sequence
and let X(k) be its eight-point DFT

(a)
1
8

7∑
k=0

X(k)ej(2π/8)k×9 =
1
8

7∑
k=0

X(k)ej(2π/8)k×1 = x(1)

(b)

V (k) = X(z)
∣∣∣
z=2ej(2πk+π)/8

=
n=∞∑

n=−∞
x(n)z−n

∣∣∣
z=2ej(2πk+π)/8

=
n=7∑
n=0

x(n)z−n
∣∣∣
z=2ej(2πk+π)/8

=
n=7∑
n=0

x(n)(2ejπ/8)−ne−j 2πk
8

n

=
n=7∑
n=0

v(n)e−j 2πk
8

n

Thus, we have
v(n) = x(n)(2ejπ/8)−n



(c)

w(n) =
1
4

3∑
k=0

W (k)ej 2πkn
4

=
1
4

3∑
k=0

(X(k) + X(k + 4))ej 2π
4

kn

=
1
4

3∑
k=0

X(k)ej 2π
4

kn +
1
4

3∑
k=0

X(k + 4)ej 2π
4

kn

=
1
4

3∑
k=0

X(k)ej 2π
4

kn +
1
4

7∑
k=4

X(k)ej 2π
4

kn

=
1
4

7∑
k=0

X(k)ej 2π
4

k2n

= 2x(2n)

Thus,
w(n) = 2x(2n)

(d) Note that Y (k) can be written as

Y (k) = X(k) + (−1)kX(k)

= X(k) + e−j 2πk4
8 X(k)

Using DFT properties, we have

y(n) = x(n) + x((n− 4)mod 8)
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2. Problem 2. Let h(n) = δ(n)− 1
2δ(n− n0)

(a) The Z-transform of h(n)

H(z) =
∞∑

n=−∞
h(n)z−n

= 1− 1
2
z−n0

The N -point DFT of h(n) with N = 8n0 is

H(k) =
8n0−1∑
n=0

h(n)e−j 2πkn
8n0 , 0 ≤ k ≤ 8n0 − 1

= 1− 1
2
e−j(π/4)k

(b) The impulse response of hi(n) is

Hi(z) =
1

1− 1/2z−n0
, |z| >

(1
2

)−n0

for causality

hi(n) =
∞∑

k=0

(1
2

)n/n0

δ(n− kn0)

This is IIR filter, so infinite duration.
(c)

G(k) =
1

H(k)
=

1
1− 1

2e−j(π/4)k
, 0 ≤ k ≤ 8n0 − 1

The impulse response, g(n) is just hi(n) time-aliased by 8n0

points

g(n) =
(
1 +

1
28

+
1

216
+ . . .

)
δ(n) +

(1
2

+
1
29

+
1

217
+ . . .

)
δ(n− n0)

+ . . .

+
( 1

27
+

1
215

+
1

223
+ . . .

)
δ(n− 7n0)

=
256
255

δ(n) +
128
255

δ(n− n0) + . . . +
2

255
δ(n− 7n0)

(d)

y(n) = g(n) ∗ h(n) =
256
255

δ(n) + . . . +
2

255
δ(n− 7n0)

−128
255

δ(n− n0)− . . .− 1
255

δ(n− 8n0)

=
256
255

δ(n)− 1
255

δ(n− 8n0)
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Since y(n) 6= δ(n), we cannot perfectly recover x(n) from y(n)
using g(n).
Indeed,

G(k)H(k) = 1, 0 ≤ k ≤ 8n0 − 1

However, this relationship is only true at 8n0 distinct frequencies.
This fact does not imply that for all frequencies w:

G(ejw)H(ejw) = 1
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3. Problem 3 An ideal low-pass filter has impulse response hlp(n) and
frequency response

Hlp(ejω) =
{

1, |ω| < 0.1π,
0, 0.1π ≤ |ω| ≤ π.

(a) H1(ejw) corresponds to a frequency shifted version of Hlp(ejω),
specifically:

H1(ejw) = Hlp(ej(w−π))

Thus, we have

H1(ejw) =

{
0, |w| ≤ 0.9π

1, 0.9π < |w| ≤ π

This is a highpass filter.
(b) H2(ejw) corresponds to a frequency modulated version of Hlp(ejω),

specifically:

H2(ejw) =
1
2
Hlp(ejw) ∗ (δ(w − 0.5π) + δ(w + 0.5π)), |w| ≤ π

Thus, we have

H2(ejw) =


0, |w| ≤ 0.4π

.5, 0.4π < |w| < 0.6π

0, 0.6π ≤ |w| ≤ π

This is a bandpass filter.
(c) H3(ejw) corresponds to a periodic convolution of Hlp(ejω) with

another lowpass filter, specifically:

H3(ejw) =
1
2π

∫ π

−π
H(ejθ)Hlp(ej(w−θ))dθ

where H(ejw) is given by

H(ejw) =

{
1, |w| < 0.1π

0, 0.1π ≤ |w| ≤ π

Carrying out the convolution, we get

H3(ejw) =

{
− |w|

2π + 0.1, |w| ≤ 0.2π

0, 0.2π < |w| ≤ π
(1)

This is lowpass filter.
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(d) The energy of h3(n) is computed using Parseval theorem

E=
1
2π

∫ π

−π
|H3(ejw)|2dw

=
1
2π

2
(∫ 0.2π

0
(0.12 − 0.2

2π
w +

1
4π2

w2)dw
)

The answer is considered to be complete up to the above equality.
Further calculation gives us the energy of h3(n) as 0.0007.

6



4. Problem 4

(a) Since y(n) = x2(n), we have Y (ejω) = X(ejω) ∗ X(ejω). Hence,
Y (ejω) will occupy twice the frequency band that X(ejω) does.
To get yc(n) = x2

c(n), the highest frequency of yc(n) is 0.5/T =
500 Hz. Consequently, the highest frequency of xc(n) is 250 Hz,
or π × 500 rads/second.

(b) The magnitude response is

∣∣H(ejω)
∣∣ =

√
2− 2 cos(ω − ω0) ·

√
2− 2 cos(ω + ω0)√

1.25− cos(ω − ω0) ·
√

1.25− cos(ω + ω0)
.

The phase response is

∠H(ejω) = tan−1

(
sin(ω − ω0)

1− cos(ω − ω0)

)
+ tan−1

(
sin(ω + ω0)

1− cos(ω + ω0)

)
− tan−1

(
0.5 sin(ω − ω0)

1− 0.5 cos(ω − ω0)

)
− tan−1

(
0.5 sin(ω + ω0)

1− 0.5 cos(ω + ω0)

)
.

(c) Since f = 100 Hz in frequency domain corresponds to Ω = 2πf =
2π × 100 rads/second in angular frequency domain, we have

ω = ΩT = 2π × 100× 10−3 =
π

5

in the transform domain of DTFT.
To filter the 100Hz out, we need

|H(ejω)|
∣∣
ω=π

5
= 0,

which holds true if

cos(ω − ω0)|ω=π
5

= 1.

Hence, we have ω0 = π
5 .
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