EE113: Digital Signal Processing Spring 2011
Solution to Final Exam (Version A)

1. Problem 1

(a) Since y(n) = z%(n), we have Y (e/*) = X (e/¥) x X (e/*). Hence,
Y (e?*) will occupy twice the frequency band that X (e/“) does.
To get y.(n) = x2(n), the highest frequency of y.(n) is 0.5/T =
5000 Hz. Consequently, the highest frequency of z.(n) is 2500
Hz, or m x 5000 rads/second.

(b) The magnitude response is

}H(ej“)‘ _ V2 —2cos(w — wp) - /2 — 2 cos(w + wp)
V/1.81 — 1.8cos(w — wp) - /1.81 — 1.8 cos(w + wp)

The phase response is

JH(E™) = tan”! sin(w — wp) 4 tan—! sin(w + wp)
1 — cos(w — wy) 1 — cos(w + wp)

~ tan-! ( 0.9sin(w — wp) )) ~ tan—! < 0.9sin(w + wp)

1 —0.9cos(w — wp

(c) Since f =60 Hz in frequency domain corresponds to 2 = 27 f =
27 x 60 rads/second in angular frequency domain, we have

3
=QT =27 x60x 1074 = —
w T X X 950

in the transform domain of DTFT.
To filter the 60Hz out, we need

H (e sr =0,
HE)|,_ s
which holds true if
cos(w — w0)|w:23% =1.
3

Hence, we have wy = 555.

1 —0.9cos(w + wp)



2. Problem 2

(a) Hi(e’¥) corresponds to a frequency shifted version of Hj,(e’*),
specifically: ‘ A
Hy (&) = Hyp(e™™)

Thus, we have

Hy () = 0, |w|<0.87
! 1, 0.87 < |w| <7

This is a highpass filter.

(b) Ha(e’™) corresponds to a frequency modulated version of Hy,(e/*),
specifically:

Hy(e?”) = Hyp(e?) * (5(w — 0.57) + §(w + 0.57)), |w| <7

Thus, we have

0, |w|<0.3m
Hy(e?™) =<1, 0.37 < |w| < 0.77
0, 0.77 <|w|<m

This is a bandpass filter.
(c) Hs(e?™) corresponds to a periodic convolution of Hj,(e/*) with
another lowpass filter, specifically:

. 1 (7
Hs(e/) = —

~5: ] H()Hypy (e’ =) a0

where H(e/%) is given by

H(elv) — 1, |w| <017
0, Olr<|w|<m

Carrying out the convolution, we get

0.1, lw| < 0.17
Hy(e) = ¢~ 1015, 0.17 < |w| < 0.37
0, 037 < |w| <7

This is lowpass filter.



(d) The energy of hs(n) is computed using Parseval theorem

1 (7 ,
E=— / |H3(e?%)|*dw

27 J_ .

1 0.1m 0.3m 0.3 1
= 0.1)2 42 0.15%2 — —“w + —w?)d
277(/0'1,} )y (/0 ( 27rw+471'2w ) w)

— Am

The answer is considered to be complete up to the above equality.
Further calculation gives us the energy of hg(n) as 0.005.



3. Problem 3. Let h(n) = 6(n) — 25(n — no)
(a) The Z-transform of h(n)

H(z) = Z h(n)z™"
1
= 1- §z_n°
The N-point DFT of h(n) with N = 4nyg is
4no—1 - 2mkn
H(k) = Y h(n)e 0, 0<k<dng—1
n=0
1 .
- 1_ §€—J(7r/2)k
(b) The impulse response of h;(n) is
1 1\-no
R
(2) 10 125
* /1\n/n
hin) = Y(5) 6n—kno)
k=0
This is IIR filter, so infinite duration.
()
1 1

G(k) =

B <k <dng—
H(k) 1-Lle-it@/2k’ 0<k<dno—1

The impulse response, g(n) is just h;(n) time-aliased by 4ng

points
1 1 1 1 1
g(n) = (1+T6+ﬁ+...>5(n)+ (§+§+m+...)5(n—no)
1 1 1 1 1 1
+(Z+a+@+...)5(n—2no)+ (§+m+—2048+...)5(n—3n0)
16 8 4 2
= B&(n) + 1—55(n —ng) + 1—55(n —2ng) + 1—55(71 — 3ng)
(d)
16 8 4 2
Y) = gln) #h(n) = 108(n) + (o) + =5(n — 2mo) + =5(n 3
8 4 2 1
—ﬁé(n —ng) — 1—55(71 — 2ng) — B(S(n —3ng) — Bé(n — 4nyg)
16 1
- B6(n) — 1—55(71 — 4nyg)

4



Since y(n) # §(n), we cannot perfectly recover z(n) from y(n)
using g(n).
Indeed,

Gk)H(k)=1, 0<k<d4ng—1

However, this relationship is only true at 4ng distinct frequencies.
This fact does not imply that for all frequencies w:

G(e7)H () = 1



4. Problem 4 Let z(n) =0, n < 0, n > 7 be a real eight-point sequence
and let X (k) be its eight-point DFT

(a) .

1 Y Y

g ZX 2 /8)k><9 ZX 2 /8 k‘><1 $(1)

k=0
(b)
V(k) = X(Z) 2=2ei(2mk+7)/8
n=oo
N _Z_ x(n)z z=2eJ(2mk+m)/8

:E(n)z »=2ei(2mk+7)/8

2k

z(n)(27/8) eI

M, LM
NI AN|

Thus, we have

k=0
3
1 i 25 ko,
= 1 (X(k) + X(k+4))e’
k=0
1S > 1S
= 2 X(R)ITE Y X (k+ el
k=0 k:O
1 3
_ —k
= DXk n4 = ZX
k=0
1< )
k=0
= 2z(2n)



Thus,
w(n) = 2z(2n)

(d) Note that Y (k) can be written as

Y(k) = X(k)+(-1)*X(k)

Using DFT properties, we have

y(n) =z(n) + z((n — 4)mod 8)



EE113: Digital Signal Processing Spring 2011
Solution to Final Exam (Version B)

1. Problem 1 Let z(n) = 0, n < 0, n > 7 be a real eight-point sequence
and let X (k) be its eight-point DFT

(a) ]
éZX(k) Jj(2m/8)kx9 _ ZX 27r/8 Yex1 :1:(1)

i}
o

Vik) = X(2)

n=oo

= Z x(n)z™"

2=2¢i (2mk+m)/8

z:er(27\'k+7f)/8

2:28j(27rk;+7r)/8

- Zx(n)(2ej”/8) n =i 2kn

Thus, we have



3
]. s Z2TTRKN
w(n) = XZW(k)eﬂf
k=0
1 3 .2
= DX (k) + X (k +4))e/ TF
k=0
1 & jQ—Trkn 1 : j2—"kn
= 2 XR)TE 2 X (k+ 4)el
k=0 k=0
3 7
= IS x4 LS (el
4 4
k=0 k=4
7
1 2
= IS e
k=0
= 2z(2n)
Thus,

w(n) = 2x(2n)
(d) Note that Y (k) can be written as

Y(k) = X(k)+(-1)"X(k)

= X(k) 4775 X(k)

Using DFT properties, we have

y(n) = z(n) + z((n — 4)mod 8)



2. Problem 2. Let h(n) = 6(n) — 25(n — no)
(a) The Z-transform of h(n)

H(z) = Z h(n)z™"
1
= 1- 52_n0
The N-point DFT of h(n) with N = 8ny is
8no—1 - 2mkn
H(k) = Y h(n)e ™0, 0<k<8ng—1
n=0
1
- 1_ §€_J(W/4)k
(b) The impulse response of h;(n) is
1 1\ —"no .

HZ(Z) = m, |Z‘ > (5) for Causahty
hi(n) = ;}(2) *5(n — kno)

This is IIR filter, so infinite duration.

()
1 1

H(k)  1- le-it/ak’

The impulse response, g(n) is just h;(n) time-aliased by 8ng

points
1 1 1 1 1
+...
1 1 1
256 128 2
— ﬁ<5(n) + ﬁé(n —ng)+...+ 2—555(71 — Tng)
(d)
256 2
y(n) =g(n) xh(n) = So=8(n)+ ...+ 5=6(n — Tno)
128 1
256 1
= 955 ( )—27555(71—8“0)
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Since y(n) # §(n), we cannot perfectly recover z(n) from y(n)
using g(n).
Indeed,

Gk)H(k)=1, 0<k<8ng—1

However, this relationship is only true at 8ng distinct frequencies.
This fact does not imply that for all frequencies w:

G(e7)H () = 1



3. Problem 3 An ideal low-pass filter has impulse response h;,(n) and
frequency response

(a)

; 1, |wl<0.1m
Jwy ) ’
Hyp(e’) = { 0, 0.7 < |w| < 7.

Hi(e?%) corresponds to a frequency shifted version of Hy,(e/),
specifically: A A
Hy(e") = Hy(e/™™)

Thus, we have

iy - {© w| < 0.97
€ =
! 1, 097 <|w| <7

This is a highpass filter.

Hj(e7™) corresponds to a frequency modulated version of Hy,(e/*),
specifically:

) 1 ,
Hy(e?V) = iHlp(er) % (0(w —0.5m) +0(w+0.5m)), |w <7
Thus, we have

0, |w|<04r
Hy(e) =< .5, 047 < |w| < 0.67
0, 067 <|wl<m

This is a bandpass filter.

H3(e?™) corresponds to a periodic convolution of Hj,(e/*) with
another lowpass filter, specifically:

, 1 [ . .
Hy(") = o / H () Hyy (7 9)) d

where H(e/%) is given by
H (i) = 1, |w| <017
0, Olr<|w|<m
Carrying out the convolution, we get

ol 01, |w <027
0, 021 <|w| <7

Hs(e) = {

This is lowpass filter.



(d) The energy of hs(n) is computed using Parseval theorem

17 .
E=— Hs(e?™)|?d
5 | ()
1 0.27 0.2 1
:72( 0.12— “Zwt ——w?)d )
27 /0 ( 27rw+47r2w Jdw

The answer is considered to be complete up to the above equality.
Further calculation gives us the energy of hg(n) as 0.0007.



4. Problem 4

(a)

Since y(n) = 2%(n), we have Y (/) = X (e/*) * X (e’¥). Hence,
Y (e/*) will occupy twice the frequency band that X (e’“) does.
To get y.(n) = x2(n), the highest frequency of y.(n) is 0.5/T =
500 Hz. Consequently, the highest frequency of z.(n) is 250 Hz,
or 7 x 500 rads/second.

The magnitude response is

‘H(ej‘“)} _ \/2 — 2cos(w — wp) - \/2 — 2cos(w + wp) .
v/1.25 — cos(w — wp) - 1/1.25 — cos(w + wp)

The phase response is

ZH(e?) = tan1< sin(w — w) )>+tan1< sin(w + wo) >

1 — cos(w — wp 1 — cos(w + wp)

C tan—! 0.5sin(w — wp) o 0.5 sin(w + wo) .
1 —0.5cos(w — wp) 1 —0.5cos(w + wp)

Since f = 100 Hz in frequency domain corresponds to 2 = 27 f =
27 x 100 rads/second in angular frequency domain, we have

w:QT:27r><100><10’3:%

in the transform domain of DTFT.
To filter the 100Hz out, we need

[H()]|,—s =0,
which holds true if
cos(w — w0)|w:% =1.

Hence, we have wp = Z.



