
EE113: Digital Signal Processing Prof. Mihaela van der Schaar
Final Exam Solution Spring 2010

Problem 1. (15 pts) A system for the discrete-time spectral analysis of continuous-time signals is shown
in Figure 1.

Figure 1: Spectral analysis system.

![n] is a rectangular window of length 32:

![n] =

{

1
32 , 0 ≤ n ≤ 31

0, otherwise.

Listed below are five signals, at least one of which was the input xc(t). Indicate which signal(s)
could have been the input xc(t) which produced the plot of ∣V [k]∣ shown in dB units in Figure
2. Provide reasoning for your choice(s).

x1(t) = 1000cos(230�t) x2(t) = 1000cos(115�t)

x3(t) = 10ej(460)�t x4(t) = 1000ej(230)�t

x5(t) = 1000ej(250)�t

Solution:

– xc(t) cannot be a cosine, because a cosine would have a second peak in the negative fre-
quencies, i.e., in the upper half of the DFT. Thus, x1(t) and x2(t) are eliminated.

– ∣V [4]∣ ≈ 60dB ≈ 1000. x3(t) is eliminated because their amplitudes are too low to have
produced a peak magnitude of 1000 in the DFT.

– The CT frequency of xc(t) cannot correspond exactly to a frequency !k = 2�k
32 sampled

by the DFT. Otherwise, the DFT would be non-zero at exactly one value of k. Thus, x5(t)
(250� → �

4 → k = 4) is eliminated.

– x4(t) is the only signal that could have been the input xc(t).
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Figure 2: Output ∣V [k]∣ in dB.
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Problem 2. (25 pts) A continuous-time signal xc(t) is defined by:

xc(t) =

{

1, if ∣t− r ⋅ t0∣ < tb, r = 0,±1,±2, ⋅ ⋅ ⋅

0, otherwise.

with tb =
t0
20 . x1[n] is obtained by sampling xc(t) with a sampling period T = t0

4 .

(a) What is x1[n]?

(b) x2[n] is the finite-length sequence formed by taking x1[n] for n = 0, 1, ⋅ ⋅ ⋅ 7. What is its
8-point DFT, X2[k]?

(c) Find the DTFT X2(e
j!) and sketch its magnitude.

(d) Evaluate the Parseval integral 1
2�

∫

2� ∣X2(e
j!)∣2d!.

(e) We form x3[n] = x1[n] ⊛ ℎ1[n]. The DTFT of ℎ1[n] is H1(e
j!) = 1 − e−2j!. Find the

time-domain sequence of x3[n]. Note: ⊛ denotes linear convolution.

Solution:

(a) The continuous-time signal is just a pulse of width 0.1t0 centered at each integer mul-
tiple of t0. Sampling at every integer multiple of t0

4 yields a periodic sequence x1[n] =
{1, 0, 0, 0, 1, 0, 0, 0, ⋅ ⋅ ⋅ }.

(b) x2[n] is simply {1, 0, 0, 0, 1, 0, 0, 0} whose DFT can be obtained directly from the DFT
equation:

X2[k] =

N
∑

n=0

x2[n]e
−j 2�kn

N

= 1 + e−j 2�4k

8 = 1 + e−j�k

= 1 + (−1)k = {2, 0, 2, 0, 2, 0, 2, 0}

(c) The DTFT is can be obtained if we let ! take the place of 2�k
N :

X2(e
j!) =

N
∑

n=0

x2[n]e
−j!n

= 1 + e−j(4!)

= e−j(2!)
(

ej(2!) + e−j(2!)
)

= 2e−j(2!) cos(2!)

(d) Using Parseval relationship, it is easy to figure out that the Parseval integral overX2(e
j!)

equals to the energy of x2(n), i.e.

1

2�

∫

2�
∣X2(e

j!)∣2d! =

N
∑

n=1

(x2(n))
2 = 12 + 12 = 2 (1)

(e) We notice that H1(e
j!) is the DTFT of {1, 0,−1}. Thus, the convolution consists

of adding the original sequence to a sign-flipped, delayed-by-two version, or x3[n] =
{1, 0,−1, 0, 1, 0,−1, 0, ⋅ ⋅ ⋅ }.
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Figure 3: Sketch of ∣X2(e
j!)∣

4



Problem 3. (25 points) The sampling system is shown in Figure 4(a). With xt real and with X(j!)
nonzero only for !1 < ∣!∣ < !2, !0 is chosen to be 1

2 (!1 + !2), and the ideal lowpass filter
H1(j!) has cutoff frequency 1

2(!2 − !1).

(a) For X(j!) as shown in Figure 4(b), sketch Xp(j!).

(b) Determine the maximum sampling period T such that x(t) is recoverable from xp(t).

(c) Determine a system to recover x(t) from xp(t).

Figure 4: The sampling system and the spectrum of x(t).

Solution:

(a) Let X1(j!) denote the Fourier transform of the signal x1 obtained by multiplying x(t)
with ej!0t. Let X2(j!) be the Fourier transform of the signal x2(t) obtained at the
output of the lowpass filter. Then X1(j!), X2(j!), and Xp(j!) are as shown in Figure
5.

(b) The Nyquist rate for the signal x2(t) is 2 × (!2 − !1)/2 = !2 − !1. Therefore, the
sampling period T must be at most 2�

!2−!1
in order to avoid aliasing.

(c) A system that can be used to recover x(t) from xp(t) is shown in Figure 5.
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Figure 5:
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Problem 4. (15 points) The figure below shows the block diagram of several discrete-time LTI systems.

(a) Find the z-transform of systems H1 and H2.

(b) Plot the pole-zero diagrams of H1 and H2.

(c) Find the impulse responses for systems H3 and H4.

Figure 6: The block diagrams of LTI systems.

Solution:

(a) For system H1, we have:

y(n) = x(n)− 0.7x(n − 1)− 0.6x(n − 2) (2)

Y (z) = (1− 0.7z−1 − 0.6z−2)X(z) (3)

H1(z) =
Y (z)

X(z)
= (1− 1.2z−1)(1 + 0.5z−1) (4)

i.e. a system with zeros at z = −0.5, 1.2. Since it has no poles, the ROC is the entire
z-plane. For H2, we have:

y(n) = x(n) + 2.0y(n − 1)− 0.96y(n − 2) (5)

Y (z) = X(z) + 2.0z−1Y (z)− 0.96z−2Y (z) (6)
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Therefore,
Y (z)(1 − 2.0z−1 + 0.96z−2) = X(z) (7)

and

H(z) =
Y (z)

X(z)
=

1

(1− 1.2z−1)(1 − 0.8z−1)
(8)

i.e. a system with poles at z = 0.8, 1.2. Since it is a causal system, the ROC is the
exterior of the largest pole radius, i.e. ∣z∣ > 1.2.

(b) Please refer to Figure 7.

Figure 7: The zeros and poles.

(c) Both systems H3 and H4 consist of the sequential application of H1 and H2, the only
difference being the order in which they are applied. According to what we have looked
at in class, convolution is commutative, so it should make no difference in what order
they are applied. In both cases, the system function is the product of the two component
systems i.e.

H3(z) = H1(z)H2(z) (9)

= (1− 1.2z−1)(1 + 0.5z−1)
1

(1− 1.2z−1)(1− 0.8z−1)
(10)

=
1 + 0.5z−1

1− 0.8z−1
(11)

where we cancel the common root at z = 1.2 in numberator and denominator (”pole-zero
cancellation”). To find the impulse response, we can simply find the inverse z-transform
of this system function, i.e.

ℎ3(n) = ℎa(n) + 0.5ℎa(n− 1) (12)

where

ℎa(n) = Z−1(
1

1− 0.8z−1
) = 0.8nu(n) (13)

so

ℎ3(n) = 0.8nu(n) + 0.5× 0.8n−1u(n− 1) (14)
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Problem 5. (20 points) Consider the block diagram in the figure below. The input x(t) is sampled at rate
of Fs =12 KHz. The Fourier transform of x(t) and the transfer function H(ej!) are plotted
in Figure 8.

(a) Plot Y (ej!).

(b) Plot Z(ej!).

(c) Find the energy of z(n).

(d) Find z(n).

Figure 8: The system diagram and the spectra of x(n) and ℎ(n).

Solution:
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Figure 9:

(a)

Figure 10:

(b)

(c)

E =

∞
∑

n=−∞

∣z(n)∣2 =
1

2�

∫

2�
∣Z(ej!)∣2d! (15)

=
2

2�

∫ �/4

0
(−

2× 12000

�
! + 12000)2d! (16)

=
1

�
[
4× 120002

3�2
!3 + 120002 −

2× 120002

�
!2]

�/4
0 (17)

=
7

48
120002 = 21 × 106. (18)

(d) Let us first find y(n).
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y(n) =
1

2�

∫

2�
Y (ej!)ej!nd! (19)

=
1

2�

∫ �/4

0
(−

24000

�
! + 12000)ej!ej!nd! (20)

+
1

2�

∫ 0

−�/4
(
24000

�
! + 12000)ej!ej!nd! (21)

= −
12000

�2

∫ �/4

0
!(ej!(n+1) + e−j!(n+1))d! (22)

+
12000

2�

∫ �/4

0
(ej!(n+1) + e−j!(n+1))d! (23)

= −
24000

�2

∫ �/4

0
!cos((n+ 1)!)d! +

12000

�

∫ �/4

0
cos((n + 1)!)d! (24)

= −
24000

�2(1 + n)2
[cos((n+ 1)

�

4
) + (1 + n)

�

4
sin((n+ 1)

�

4
)− 1] (25)

+
12000

�(1 + n)
[sin((n+ 1)

�

4
)]. (26)

and now z(n) is given by
z(n) = (−1)ny(n) (27)
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