
EE113: Digital Signal Processing Fall 2015
Prof. Ali H. Sayed November 3, 2015

MIDTERM EXAMINATION

1. (30 PTS) True or False? Explain or give counter-examples:

(a) The ROC of X(z) excludes the points at ±∞ if x(n) is a causal sequence.

Solution:
False. By definition of the z-transform, X(z) =

∑+∞
n=−∞ x(n)z−n =

∑+∞
n=0 x(n)z−n where

the last equality follows from the causality of x(n). Since X(z) does not contain any
positive power of z, ±∞ can be included in the ROC.

(b) Any given X(z) can be the transform of at most two possible sequences, x(n).

Solution:
False. Suppose

X(z) =
z

z − 1
+

z

z − 2

This can be the transform of three sequences, depending on how the ROC is defined. If
|z| > 2, then x(n) = u(n) + 2nu(n). If 1 < |z| < 2, then x(n) = u(n) − 2nu(−n − 1).
And finally, if |z| < 1, then x(n) = −u(−n− 1)− 2nu(−n− 1).

(c) If Z+[x1(n)] = Z+[x2(n− 1)], then x2(n) = x1(n+ 1).

Solution:
False. Suppose x1(n) = u(n) + u(−n− 1), then Z+[x1(n)] = Z[x1(n)u(n)] = Z[u(n)] =
z

z−1 , |z| > 1. Consider now x2(n) = u(n + 1), then Z+[x2(n − 1)] = Z+[u(n)] = z
z−1 ,

|z| > 1. Thus we have Z+[x1(n)] = Z+[x2(n− 1)] but x2(n) 6= x1(n+ 1).

(d) If Z[x1(n)] = Z[x2(n− 1)], then x2(n) = x1(n+ 1).

Solution:
False. Suppose x1(n) = u(n), then Z[x1(n)] = z

z−1 , |z| > 1. Consider now x2(n) =
−u(−n − 2), then Z[x2(n − 1)] = Z[−u(−n − 1)] = z

z−1 , |z| < 1. Thus we have
Z[x1(n)] = Z[x2(n− 1)] but x2(n) 6= x1(n+ 1).

(e) The product of two periodic sequences is not necessarily periodic.

Solution:
False. Let us denote by N1 the period of the first sequence and by N2 the period of
the second sequence. Then after N3 = LCM(N1, N2) samples, both sequences repeat
themselves thus their product must also repeat itself after N3 samples, which makes the
product also periodic of period N3.

(f) The system y(n) = y(n− 1) + x(2n), y(−1) = 0, n ≥ 0, is time-invariant.

Solution:
False. Let x1(n) = δ(n), then by iterating we can find that the output to x1(n) is
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y1(n) = u(n). Let us now consider x2(n) = x1(n − 1) = δ(n − 1). Then x2(2n) =
x1(2n − 1) = δ(2n − 1) = 0 for all n, thus the output to x2(n) is y2(n) = 0 for all n.
Since y2(n) 6= y1(n− 1), the system is time-variant.

(g) Every periodic sequence is an energy sequence.

Solution:
False. Any non-zero periodic sequence has infinite energy, and thus it is not an energy
sequence.

(h) A relaxed system can be nonlinear.

Solution:
True. Consider for instance the following system: y(n) = x2(n). This is a relaxed and
nonlinear system.

(i) The result of convolving two sequences is always a longer sequence.

Solution:
False. If we convolve for example δ(n)− δ(n− 1) with u(n), we obtain:

(δ(n)− δ(n− 1)) ∗ u(n) = u(n)− u(n− 1) = δ(n)

(j) If x(n) is an energy sequence then so is x2(−n).

Solution:
True. If x(n) is an energy sequence then

∑∞
n=−∞ |x(n)|2 <∞. Since

∑∞
n=−∞ |x(−n)|4 =∑∞

n=−∞ |x(n)|4 ≤
(∑∞

n=−∞ |x(n)|2
)2

< ∞, we conclude that x2(−n) is an energy se-
quence as well.

2. (30 PTS) Consider the block diagram representation shown in the figure consisting of the series
cascade of two LTI systems, S1 and S2, with a squaring device in between. The following is
known about the system:

(i) 1
2δ(n− 3)− δ(2n− 4) = S1[δ(n− 1)].

(ii) y(n) = (1/3)n−1u(2n− 1) when x(n) = δ(n).

Determine a difference equation relating y(n) and x(n).

Figure 1: A cascade of three systems.

Solution:
Let us first find the impulse response h1(n) of the first system S1. We know that S1[δ(n−1)] =
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1
2δ(n − 3) − δ(2n − 4) = 1

2δ(n − 3) − δ(n − 2), therefore using the properties of LTI system,
we conclude that: h1(n) = S1[δ(n)] = 1

2δ(n − 2) − δ(n − 1). Thus r(n) and x(n) are related
as follows: r(n) = 1

2x(n− 2)− x(n− 1).

Let us now find the impulse response of the second system S2. When δ(n) is applied as
an input to the first system, the output is then r(n) = 1

2δ(n) − δ(n − 1). Thus r2(n) =
1
4δ(n − 2) + δ(n − 1). Let us denote by z(n) the input to the second system. Thus when
z(n) = r2(n) = 1

4δ(n− 2) + δ(n− 1), the corresponding output is y(n) = (1/3)n−1u(2n− 1) =
(1/3)n−1u(n − 1). Using the z-transform, we can now obtain the transfer fucntion of the
second system H2(z):

H2(z) =
Y (z)

Z(z)

=
(z − 1

3)−1

1
4z
−2 + z−1

=
z2

(z − 1
3)(z + 1

4)

=
z2

z2 − 1
12z −

1
12

=
1

1− 1
12z
−1 − 1

12z
−2

Therefore, system S2 can be described by

y(n)− 1

12
y(n− 1)− 1

12
y(n− 2) = z(n) = r2(n)

Since r(n) = 1
2x(n − 2) − x(n − 1), the difference equation that relates y(n) to x(n) is as

follows:

y(n)− 1

12
y(n− 1)− 1

12
y(n− 2) =

(
1

2
x(n− 2)− x(n− 1)

)2

3. (20 PTS) Consider the difference equation:

y(n)− 1

3
y(n− 1) = n

(
1

4

)n/2

u(2n− 1), n ≥ 0, y(−1) = 2.

(a) Use the z−transform technique to determine the zero-state response of the system.

Solution:
We can equivalently write the input as follows:

n

(
1

4

)n/2

u(2n− 1) = n

(
1

4

)n/2

u(n− 1) = n

(
1

2

)n

u(n)

Thus, the z-transform of yzs(n) satisfies the following equation:

Yzs(z)−
1

3
z−1Yzs(z) =

1

2

z(
z − 1

2

)2
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Thus,

Yzs(z) =
1

2

z2(
z − 1

3

) (
z − 1

2

)2 , |z| > 1

2

We can now perform the partial expansion of Yzs(z):

Yzs(z) =
A

z − 1
3

+
B(

z − 1
2

)2 +
C

z − 1
2

where A,B and C are found using:

A = Yzs(z)(z −
1

3
)|z= 1

3
= 2

B = Yzs(z)(z −
1

2
)2|z= 1

2
=

3

4

C =
d

dz

(
Yzs(z)(z −

1

2
)2
)
|z= 1

2
= −3

2

which yields

Yzs(z) =
2

z − 1
3

+
3/4(
z − 1

2

)2 − 3/2

z − 1
2

Therefore,

yzs(n) =

(
2

(
1

3

)n−1
+

3

2
(n− 1)

(
1

2

)n−1
− 3

2

(
1

2

)n−1
)
u(n− 1)

(b) Without redoing the calculations, how would your answer to part (a) change if the

sequence on the right-hand side is replaced by (n− 1)
(
1
4

)n/2
u(n− 2)?

Solution:
Since (n − 1)

(
1
4

)n/2
u(n − 2) = (n − 1)

(
1
2

)n
u(n − 2) = (n − 1)

(
1
2

)n
u(n − 1) = 1

2(n −
1)
(
1
2

)n−1
u(n− 1), the corresponding zero-state response is thus 1

2yzs(n− 1).

4. (20 PTS) Consider the running weighted average system

y(n) =
1

Sn

n∑
k=1

kλn−kx(k), n ≥ 1

y(0) = 0

where λ ∈ (0, 1) and Sn is the normalization factor defined as

Sn =

n∑
k=1

kλn−k, n ≥ 1

(a) How is Sn related to Sn−1?

Solution:
Sn−1 is given by

Sn−1 =
n−1∑
k=1

kλn−1−k =
1

λ

n−1∑
k=1

kλn−k
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Thus,

Sn =

n∑
k=1

kλn−k =

n−1∑
k=1

kλn−k + nλ0 =

n−1∑
k=1

kλn−k + n = λSn−1 + n

(b) Find a difference equation relating y(n) to y(n− 1) and x(n) in terms of Sn.

Solution:
y(n− 1) is given by

y(n− 1) =
1

Sn−1

n−1∑
k=1

kλn−1−kx(k) =
1

λSn−1

n−1∑
k=1

kλn−kx(k)

Thus,

y(n) =
1

Sn

n∑
k=1

kλn−kx(k) =
1

Sn

n−1∑
k=1

kλn−kx(k) +
n

Sn
λ0x(n) =

λSn−1
Sn

y(n− 1) +
n

Sn
x(n)

Using the relation obtained in (a), y(n) is related to y(n− 1) and x(n) as follows:

y(n) =
Sn − n
Sn

y(n− 1) +
n

Sn
x(n) =

(
1− n

Sn

)
y(n− 1) +

n

Sn
x(n), n ≥ 1

y(0) = 0

(c) Is the system causal? linear? stable?

Solution:

• The system is causal, since y(n) depends on the present and past values of x(n).

• The system is linear. Suppose we have the following two sequences x1(n) and x2(n)
with their corresponding outputs y1(n) and y2(n). Let us now consider a third
sequence x3(n) = ax1(n) + bx2(n) where a and b are scalar constants. Then the
corresponding output y3(n) is

y3(n) =
1

Sn

n∑
k=1

kλn−kx3(k) =
1

Sn

n∑
k=1

kλn−k (ax1(k) + bx2(k))

=
1

Sn

n∑
k=1

akλn−kx1(k) +
1

Sn

n∑
k=1

bkλn−kx2(k)

= ay1(n) + by2(n)

Thus the system is linear.

• The system is stable. Suppose x(n) is a bounded sequence, i.e., there exists a scalar
B > 0 such that |x(n)| ≤ B for all n, then

|y(n)| =

∣∣∣∣∣ 1

Sn

n∑
k=1

kλn−kx(k)

∣∣∣∣∣ ≤ 1

Sn

n∑
k=1

kλn−k|x(k)| ≤ 1

Sn

(
n∑

k=1

kλn−k

)
B = B

Thus y(n) is bounded and the system is stable.
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(d) Is the system relaxed? time-invariant?

Solution:

• The system is relaxed, since y(n) is zero as long as the input x(n) is zero.

• The system is not time-invariant. Consider the following sequence x1(n) = x(n− 1)
and let us denote by y1(n) its corresponding output. Since x(n) is considered as a
permissible input for n ≥ 1, we can consider x(0) = 0 so that x1(1) = x(0) = 0
which implies that y1(1) = 0. Then for any n ≥ 2

y1(n) =
1

Sn

n∑
k=1

kλn−kx1(k) =
1

Sn

n∑
k=2

kλn−kx1(k) =
1

Sn

n∑
k=2

kλn−kx(k − 1)

Let us use the following change of variables ` = k − 1, then

y1(n) =
1

Sn

n−1∑
`=1

(`+ 1)λn−`−1x(`), n ≥ 2

y1(1) = 0

Let us now compare y1(n) with z(n) = y(n− 1). z(n) is given by:

z(n) = y(n− 1) =
1

Sn−1

n−1∑
`=1

`λn−`−1x(`), n ≥ 2

z(1) = 0

y1(n) 6= z(n), which implies that the system is not time-invariant.

EE113 — Fall 2015 6 of 6


