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MIDTERM EXAMINATION

(Closed Book)

1. A relaxed system is described by the difference equation

y(n)− 1
2
y(n− 1) = x2(n), n ≥ 0

where x(n) denotes the input sequence and y(n) denotes the output sequence. Prove or give counter-
examples:

(a) (10 PTS) Is the system linear?

(b) (10 PTS) Is the system time-invariant?

(c) (5 PTS) Is the system causal?

(d) (10 PTS) Is the system BIBO stable?

(e) (5 PTS) How would your answers to (a)-(d) change if the interval n ≥ 0 were replaced by n ≤ 0?

2. A causal system is described by the difference equation

y(n)− 1
2
y(n− 1) = x2(n), n ≥ 0

with initial condition y(−1) = 2, and where x(n) denotes the input sequence.

(a) (5 PTS) Draw a block diagram representation of the system.

(b) (5 PTS) Find the zero-input solution of the system.

(c) (10 PTS) Find the zero-state solution of the system corresponding to x(n) = (1/2)nu(n− 1).

(d) (10 PTS) Find the complete solution of the system. Verify that your solution satisfies the initial
condition and the difference equation.

(e) (15 PTS) Find the z−transform of the sequence nx(−n) + x2(n − 2). Specify its region of
convergence. Find also the energy of this sequence.

(f) (5 PTS) Plot the sequence nx(−n) + x2(n− 2).

3. (10 PTS) Use the z–transform to evaluate the series

∞∑
n=2

n2

(
1
2

)n

u(n− 1)
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MIDTERM SOLUTIONS

1. A relaxed system is described by the difference equation

y(n)− 1
2
y(n− 1) = x2(n), n ≥ 0

where x(n) denotes the input sequence and y(n) denotes the output sequence. Prove or give
counter-examples:

We can find the input–output relation of the system by iteration as follows:

y(0) = x2(0)

y(1) =
1
2
x2(0) + x2(1) =

1
2

[
x2(0) + 2x2(1)

]

y(2) =
1
4
x2(0) +

1
2
x2(1) + x2(2) =

1
4

[
x2(0) + 2x2(1) + 4x2(2)

]

...

y(n) =
(

1
2

)n [
x2(0) + 2x2(1) + . . . + 2nx2(n)

]

Then the general form of y(n) is

y(n) =
(

1
2

)n n∑

i=0

2ix2(i) , n ≥ 0

(a) (10 PTS) Is the system linear?
Let y1(n) and y2(n) denote the output sequences that correspond to an input sequences
x1(n) and x2(n), respectively. Then y1(n) and y2(n) can be expressed as

y1(n) = S[x1(n)] =
(

1
2

)n n∑

i=0

2ix2
1(i) , n ≥ 0

y2(n) = S[x2(n)] =
(

1
2

)n n∑

i=0

2ix2
2(i) , n ≥ 0

Now, the output y(n) that corresponds to the linear combination ax1(n) + bx2(n) is

y(n) = S [ax1(n) + bx2(n)] =
(

1
2

)n n∑

i=0

2i (ax1(i) + bx2(i))
2 , n ≥ 0



whereas

ay1(n) + by2(n) = a

(
1
2

)n n∑

i=0

2ix2
1(i) + b

(
1
2

)n n∑

i=0

2ix2
2(i) , n ≥ 0

clearly,
S [ax1(n) + bx2(n)] 6= ay1(n) + by2(n)

Therefore, the system is nonlinear.

(b) (10 PTS) Is the system time-invariant?
The system response to the input x(n− k) is given by

yk(n) = S [x(n− k)] =
(

1
2

)n n∑

i=k

2ix2(i− k)

Note that the lower limit of the sum has changed from 0 to k. The reason is that we
only include the samples of x2(n) for n ≥ 0. On the other hand the output sequence
delayed by k samples, y(n− k), is given by

y(n− k) =
(

1
2

)n−k n−k∑

i=−k

2ix2(i) =
(

1
2

)n n∑

i=0

2ix2(i− k)

clearly,
S [x(n− k)] 6= y(n− k)

Therefore, the system is not time-invariant.

We can also show that the system is not time–invariant by using the following counter
example:

Let x(n) = δ(n + 1) + δ(n). then,

For x(n) = δ(n + 1) + δ(n) For x(n− 1) = δ(n) + δ(n− 1)
y(0) = 1 y1(0) = 1

y(1) = 1/2 y1(1) = 3/2
y(2) = 1/4 y1(2) = 3/4
y(3) = 1/8 y1(3) = 3/8

...
...

Clearly, y1(n) 6= y(n− 1), then we conclude that the system is not time–invariant.

(c) (5 PTS) Is the system causal?
y(n) depends on the current and previous samples of the input sequence. Therefore, the
system is causal.



(d) (10 PTS) Is the system BIBO stable?
Let y(n) denote the output sequence that corresponds to any bounded input sequence
x(n). This means that |x(n)| is less that or equal to a finite positive number M .

|x(n)| ≤ M < ∞ for all n

Now, we need to show that the output sequence is also bounded for the system to be
stable. We proceed as follows:

|y(n)| =

∣∣∣∣∣
(

1
2

)n n∑

i=0

2ix2(i)

∣∣∣∣∣ ≤
(

1
2

)n n∑

i=0

2i
∣∣x2(n)

∣∣

≤
(

1
2

)n

M2
n∑

i=0

2i = M2

(
2−

(
1
2

)n)
≤ 2M2 < ∞

We then conclude that the system is BIBO stable.

2. A causal system is described by the difference equation

y(n)− 1
2
y(n− 1) = x2(n), n ≥ 0

with initial condition y(−1) = 2, and where x(n) denotes the input sequence.

(a) (5 PTS) Draw a block diagram representation of the system.

(b) (10 PTS) Find the zero-input solution of the system.
The zero–input solution, yzi(n), is the solution to the homogeneous equation

y(n)− 1
2
y(n− 1) = 0

subject to the y(-1) = 2. The characteristic equation of the system is

λ− 1
2

= 0 =⇒ λ =
1
2

Then, yzi(n) = C
(

1
2

)n We then use the initial condition to find C:

y(−1) = 2 = C

(
1
2

)−1

=⇒ C = 1



Therefore,

yzi(n) =
(

1
2

)n

, n ≥ 0

(c) (10 PTS) Find the zero-state solution of the system corresponding to x(n) = (1/2)nu(n−
1).
Let z(n) = x2(n) =

(
1
4

)n
u(n− 1), then the relaxed difference equation that we solve for

the zero–state solution becomes

y(n)− 1
2
y(n− 1) = z(n) , y(0) = 0

where y(0) = 0 is the initial condition needed for the system to be relaxed. We can now
solve for the zero–state solution in many different ways. We will do it using two different
methods; first by solving as yzs(n) = yh(n) + yp(n) and then by using the z–transform
approach.

(a) Using yzs(n) = yh(n) + yp(n)
We can write the modified input sequence z(n) as follows,

z(n) = x2(n) =
(

1
4

)n

u(n− 1) =
1
4

(
1
4

)n−1

u(n− 1)

We first find the zero–state solution to z′(n) =
(

1
4

)n
u(n) then we use the time

invariance of the system to find the zero–state solution to z(n)
– Homogeneous solution yh(n) is the solution to the homogeneous equation y(n)−

1
2y(n− 1) = 0, that is

yh(n) = C

(
1
2

)n

, for all n

– Particular solution: We now use the modified difference equation

y(n)− 1
2
y(n− 1) = z′(n) , z′(n) =

(
1
4

)n

u(n)

The solution has the form yp(n) = K
(

1
4

)n
u(n). Substituting in the difference

equation, we get

K

(
1
4

)n

u(n)− 1
2
K

(
1
4

)n−1

u(n− 1) =
(

1
4

)n

u(n)

Solving for K, we find that K = −1 for n ≥ 1 and the particular solution is

yp(n) = −
(

1
4

)n

, n ≥ 1

Then, the zero–state solution to z′(n) is given by

yzs′ = yh(n) + yp(n) = C

(
1
2

)n

−
(

1
4

)n

, n ≥ 1



Using the relaxed initial condition y(−1) = 0, we find that y(0) = 1. Using y(0),
we find that C = 2, therefore

yzs′ = yh(n) + yp(n) =
[
2

(
1
2

)n

−
(

1
4

)n]
u(n)

Finally, we use the time–invariance property of the system to find the zero-state
response to z(n) = 1

4z′(n− 1) to be

yzs(n) =
1
4
yzs′(n− 1) =

[(
1
2

)n

−
(

1
4

)n]
u(n− 1)

(b) Using z–transform
Starting from

y(n)− 1
2
y(n− 1) =

(
1
4

)n

u(n− 1)

We take the z–transform of both sides to get

Yzs(z)− 1
2
z−1 =

1
4

1
z − 1/4

Then,

Yzs(z) =
1/4 · z

(z − 1/2)(z − 1/4)

Using partial fractions, we see that Y (z) can be written as

Yzs(z) =
1/2

z − 1/2
− 1/4

z − 1/4

Finally, we use the inverse z–transform to obtain an expression for yzs(n)

yzs(n) =
(

1
2

)n

u(n− 1)−
(

1
4

)n

u(n− 1)

(d) (10 PTS) Find the complete solution of the system. Verify that your solution satisfies
the initial condition and the difference equation.
The complete solution is the sum of the zero–input solution and the zero–state solution.
Then,

y(n) = yzi(n) + yzs(n)

=
(

1
2

)n

u(n) +

[(
1
2

)n

−
(

1
2

)2n
]

u(n− 1)

To verify that the solution satisfies the initial condition and the difference equation,
we evaluate a few terms of y(n) using the obtained solutions and compare them to the



corresponding values that we get from iterating the difference equation. The comparison
is shown below:

Solution Difference equation
n = 0 y(0) = 1 y(0) = 1

2y(−1) + x2(0) = 1
n = 1 y(1) = 3

4 y(1) = 1
2y(0) + x2(1) = 1

2 + 1
4 = 3

4
n = 2 y(2) = 7

16 y(2) = 1
2y(1) + x2(2) = 3

8 + 1
16 = 7

16
...

...
...

(e) (15 PTS) Find the z−transform of the sequence nx(−n) + x2(n− 2). Specify its region
of convergence. Find also the energy of this sequence.
Let

x1(n) = nx(−n) = n (2)n u(−n− 1)

and

x2(n) = x2(n− 2) =
(

1
4

)n−2

u(n− 3) =
1
4

(
1
4

)n−3

u(n− 3)

The z–transform of x1(n) is found as follows:

2nu(−n− 1) ←→ − z

z − 2
, |z| < 2

n2nu(−n− 1) ←→ −z
d

dz

− z

z − 2
=

− 2z

(z − 2)2
, |z| < 2

and the z–transform of x2(n) is found as follows:
(

1
4

)n

u(n) ←→ z

z − 1/4
, |z| > 1

4
(

1
4

)n−3

u(n− 3) ←→ z−3 z

z − 1/4
=

1
z2(z − 1/4)

, |z| > 1
4

Then the z–transform of nx(−n) + x2(n− 2) is

− 2z

(z − 2)2
+

1
4

1
z2(z − 1/4)

,
1
4

< |z| < 2

The energy of the sequence is computed as follows

Ex =
∞∑

n=−∞
|x(n)|2

=
∞∑

n=−∞

∣∣∣∣∣n (2)n u(−n− 1) +
(

1
4

)n−2

u(n− 3)

∣∣∣∣∣
2

=
∞∑

n=−∞
n2 (4)n u(−n− 1) +

∞∑
n=−∞

(
1
16

)n−2

u(n− 3)

+
∞∑

n=−∞
n (2)n

(
1
4

)n−2

u(n− 3)u(−n− 1)



Note that the third term equals to zero since u(n− 3)u(−n− 1) = 0. Therefore,

Ex =
−1∑

n=−∞
n2 (4)n +

∞∑

n=3

(
1
16

)n−2

=
∞∑

n=1

n2

(
1
4

)n

+
∞∑

n=3

(
1
16

)n−2

=
20
27

+
1
15

=
109
135

= 0.8074

(f) (5 PTS) Plot the sequence nx(−n) + x2(n− 2).

3. (10 PTS) Use the z–transform to evaluate the series

∞∑

n=2

n2

(
1
2

)n

u(n− 1)

∞∑

n=2

n2

(
1
2

)n

u(n− 1) =
∞∑

n=2

n2(2)−nu(n− 1) =
∞∑

n=−∞
n2u(n− 2)(2)−n

Now let x(n) = n2u(n− 2), then

∞∑

n=2

n2

(
1
2

)n

=
∞∑

n=−∞
x(n)(2)−n = X(z) |z=2



We then calculate X(z) as follows

u(n− 2) ←→ z−2 z

z − 1
=

1
z(z − 1)

nu(n− 2) ←→ −z
d

dz

1
z(z − 1)

=
2z − 1

z(z − 1)2

n2u(n− 2) ←→ −z
d

dz

2z − 1
z(z − 1)2

=
4z2 − 3z + 1

z(z − 1)3

Then

X(z) =
4z2 − 3z + 1

z(z − 1)3
=⇒

∞∑

2

n2

(
1
2

)n

= X(z) |z=2 =
11
2


