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MIDTERM SOLUTIONS

1. (10 PTS) Is the system BIBO stable?
From the figure, the system difference equation is given by y(n) − 3

4y(n − 1) + 1
8y(n − 2) = x(n), so

that its characteristic equation is:
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8
= 0
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Both modes of the system (λ = 1
2 and λ = 1

4 ) are inside the unit disc. Since the system is causal, then
it is BIBO stable.

2. (30 PTS) Find the complete response of the system when x(n) = αnu(n), where |α| < 1.
Particular solution
For x(n) = αnu(n), the particular solution has the form yp(n) = Kαnu(n). To evaluate K, we
substitute yp(n) into the difference equation

Kαnu(n)− 3
4
Kαn−1u(n− 1) +

1
8
Kαn−2u(n− 2) = αnu(n)

For n ≥ 2,
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so that
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and, hence,

yp(n) = αn+2
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8
u(n) , n ≥ 2

Homogeneous solution
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Then, the complete solution y(n) is given by:

y(n) = yh(n) + yp(n)
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Using the system difference equation and the initial conditions y(−2) = 0 and y(−1) = − 4
3 , we get

y(0) =
3
4
y(−1)− 1

8
y(−2) + x(0) = 0

y(1) =
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8
y(−1) + x(1) = α +

1
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Then C1 and C2 should satisfy
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solving for C1 and C2, we get
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It follows that
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3. (10 PTS) Are there choices of α for which at least one of the modes of the system is not excited (i.e.,
does not appear) at the output? Describe all such α′s.

For the mode λ = 1
2 to disappear, we choose α such that , i.e.

α = −1
4

Similarly, for the mode λ = 1
4 to disappear, we choose α such that C2 = 0, i.e.

α = −1
2

4. (10 PTS) Find the energy of the output sequence when α = −1/4.
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The energy of the sequence y(n) is given by
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5. (30 PTS) Find the same complete response as in part 2) above by using the z−transform technique.

Only zero state solution can be found by Z-transform.
Zero–state solution
Taking the Z-transform of the difference equation, we find that the Z-transform of the zero–state
solution is

Yzs(z)− 3
4
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For x(n) = αnu(n)
X(z) =

z

z − α
, |z| > |α|

Then,
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Define Ȳ (z) = z−1Yzs(z). Using partial fractions, Ȳ (z) can be written as
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The constants A,B, and C are evaluated as follows
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(
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=
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Substituting A,B, and C, we get
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Using inverse Z-transform, yzs(n) is

yzs(n) = 1
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Zero–input solution

yzi(n) = C1

(
1
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+ C2

(
1
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Using the initial conditions y(−1) = − 4
3 and y(−2) = 0 to determine C1 and C2 we get

2C1 + 4C2 = −4
3

4C1 + 16C2 = 0

By solving these two equations, we find C1 = − 4
3 and C2 = 1

3 . Then,
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Complete solution
Adding the zero–input solution to the zero–state solution we obtain the complete solution

y(n) = yzs(n) + yzi(n)
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6. (10 BONUS PTS) Which value of α results in an output sequence with smallest energy?
Let y(n) =
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Then,
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Then we find the value of α results in an output sequence with smallest energy by setting d
dαEY = 0 and

solving the resulting equation.


