SOLUTIONS FOR MIDTERM EXAMINATION

- 1. (50 PTS) True or False? Explain or give counter-examples:
	- (a) If a system is unstable, then it cannot be FIR. Solution: True. It is equivalent to prove that an FIR system is always stable. Suppose we have a bounded input $|x(n)| \leq B$ for all n. The output of an FIR LTI system

$$
y(n) \triangleq \sum_{k=0}^{N} a_k x(n-k)
$$

is bounded since

$$
|y(n)| \le \sum_{l=0}^{N} |a_k| \cdot |x(n-k)| \le B \sum_{k=0}^{N} |a_k| \triangleq B' \le \infty
$$

- (b) The system $y(n) = y(n-1) + x^2(n)$, $y(-1) = 0$, $n \ge 0$ is time-variant.
	- Solution: False. The overall system can be regarded as a series cascade of two systems. The first system is $x'(n) = x^2(n), n \ge 0$, which is time-invariant. The second system is $y(n) = y(n-1) + x'(n), y(-1) = 0, n \ge 0$, which is LTI. Therefore, the overall system is time-invariant since the series cascade of time-invariant systems is time-invariant.
- (c) If two systems are relaxed, then their series cascade is also relaxed.

Solution: True. For the first relaxed system with input $x(n)$ and output $x'(n)$, we have that for any n_0 ,

if
$$
x(n) = 0
$$
 for $n < n_0$ then $x'(n) = 0$ for $n < n_0$

The sequence $x'(n)$ is then fed into the second relaxed system with output $y(n)$ so that for any n_0

if
$$
x'(n) = 0
$$
 for $n < n_0$ then $y(n) = 0$ for $n < n_0$

Combining the above results, we can conclude that for any n_0

if
$$
x(n) = 0
$$
 for $n < n_0$ then $y(n) = 0$ for $n < n_0$

which is a relaxed system.

(d) If an LTI system is stable, then its impulse response sequence is an energy sequence. **Solution:** True. For a stable LTI system, the impulse response $h(n)$ is absolutely summable, i.e., we have

$$
\sum_{n=-\infty}^{\infty} |h(n)| < \infty \quad \Rightarrow \quad \left(\sum_{n=-\infty}^{\infty} |h(n)|\right)^2 < \infty
$$

Since $|h(n)|$ is nonnegative for any n, we have

$$
\sum_{n=-\infty}^{\infty} |h(n)|^2 \le \left(\sum_{n=-\infty}^{\infty} |h(n)|\right)^2 < \infty
$$

and, therefore, $h(n)$ is an energy sequence.

(e) Every periodic sequence is a power sequence.

Solution: False. If the samples of periodic sequences have infinite values, then the statement is not true. For example, the sequence $x(n) = \tan(n\pi/2)$ is periodic but not a power sequence. On the other hand, if the samples are all finite, we can prove that the statement is true. Consider a periodic sequence $x(n)$ with period N_x . Let us denote the energy within one period of $x(n)$ as

$$
E_x = \sum_{k=1}^{N_x} |x(k + mN_x)|^2
$$

for any integer m. Then, the average power of $x(n)$ can be expressed as

$$
P_x = \lim_{N \to \infty} \left(\frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2 \right)
$$

=
$$
\lim_{k \to \infty} \left(\frac{1}{2kN_x+1} \sum_{n=-kN_x}^{kN_x} |x(n)|^2 \right)
$$

=
$$
\lim_{k \to \infty} \frac{2kE_x + |x(0)|^2}{2kN_x+1}
$$

=
$$
\frac{E_x}{N_x}
$$

where we define $N = kN_x$ and let k go to infinity. Therefore, $x(n)$ is a power sequence.

- (f) There cannot exist a sequence that has both infinite power and infinite energy. **Solution:** False. Consider the sequence $x(n) = \alpha^n u(n), \alpha > 1$ which has both infinite power and infinite energy.
- (g) The convolution of two causal sequences can be a non-causal sequence.
- Solution: False. The ROC of a causal sequence is the exterior of a disc. Let us consider two causal sequences $x_1(n)$ and $x_2(n)$ with the ROC = $\{|z| > r_1\}$ and the ROC = $\{|z| > r_2\}$, respectively. The convolution $y(n) = x_1(n) \star x_2(n)$ has the ROC = ${|z| > max(r_1, r_2)}$, which implies that $y(n)$ is also a causal sequence. Another way to see this is to use the definition of the convolution. Suppose that we can write $x_1(n)$ $x'_1(n)u(n-m_1)$ and $x_2(n) = x'_2(n)u(n-m_2)$ for some sequences $x'_1(n)$ and $x'_2(n)$ and some integers m_1 and m_2 . Then, the convolution $y(n) = x_1(n) \star x_2(n)$ is given by

$$
y(n) = \sum_{k=-\infty}^{\infty} x_1(k)x_2(n-k)
$$

=
$$
\sum_{k=m_1}^{n-m_2} x'_1(k)x'_2(n-k)u(k-m_1)u(n-k-m_2)
$$

$$
= \left(\sum_{k=m_1}^{n-m_2} x_1'(k)x_2'(n-k)\right) u(n-m_1-m_2)
$$

which is a causal sequence.

- (h) The complete solution of an LTI difference equation coincides with its zero-state solution. **Solution:** True. The complete solution can be written as $y(n) = y_{zi}(n) + y_{zs}(n)$. An LTI difference equation implies that the initial conditions are zero. By setting the input $x(n) = 0$, we get $y_{zi}(n) = 0$ and thus $y(n) = y_{zs}(n)$.
- (i) The steady-state response of a stable LTI system is the zero sequence. **Solution:** False. Consider an stable LTI system with $h(n) = \delta(n)$. When the input sequence is $x(n) = \cos(w_0 n)u(n)$, the steady-state response of the system is $y_{zs}(n)$ $cos(w_0 n)$ which is not a zero sequence.
- (j) The zero-input solution of a relaxed system is the zero sequence. **Solution:** True. From the definition of a relaxed system, we have that for any n_0 ,

if
$$
x(n) = 0
$$
 for $n < n_0$ then $y(n) = 0$ for $n < n_0$

For the input $x(n) = 0$, we always get the output $y(n) = 0$.

- 2. (15 PTS) A class has N students numbered 1 through N. Let $x(n)$ denote the grade of student *n* in the midterm examination on a scale of 100. Let $y(n)$ denote the maximum grade of the first *n* students (i.e., of students $1, 2, ..., n$).
	- (a) Find a description for the system that relates $y(n)$ to $y(n-1)$ and $x(n)$ for $n \geq 1$. Solution:

$$
y(n) = \max_{1 \le k \le n} x(k)
$$

= max
$$
\left\{ \max_{1 \le k \le n-1} x(k), x(n) \right\}
$$

= max
$$
\{y(n-1), x(n)\}
$$

(b) Is the system causal? linear? stable?

Solution: The system is causal because $y(n)$ does not depend on future values of $x(m)$ for any $m > n$.

The system is non-linear. To see this, let us consider two different input sequences $x_1(n)$ and $x_2(n)$, and denote their corresponding output sequences by

$$
y_1(n) = \max_{1 \le k \le n} x_1(k), \qquad y_2(n) = \max_{1 \le k \le n} x_2(k)
$$

If we have the input sequence $x(n) = \alpha x_1(n) + \beta x_2(n)$ for any α and β , we have the following result in general:

$$
y(n) = \max_{1 \le k \le n} x(k)
$$

=
$$
\max_{1 \le k \le n} \alpha x_1(k) + \beta x_2(k)
$$

$$
\neq \alpha \max_{1 \le k \le n} x_1(k) + \beta \max_{1 \le k \le n} x_2(k)
$$

=
$$
\alpha y_1(n) + \beta y_2(n)
$$

The system is stable because with any bounded input sequence $|x(n)| \leq 100$ for all $n \geq 1$, we always get a bounded output sequence $|y(n)| \leq 100$.

- (c) Assume $x(n) = 50$ for all students. What is the response of the system? **Solution:** From the result in (a) we have $y(n) = 50$ for all $n \ge 1$.
- 3. (25 PTS) A causal system is described by the following second-order difference equation:

$$
y(n) + \frac{1}{12}y(n-1) - \frac{1}{12}y(n-2) = x^2(n), \quad y(-1) = 0, \quad y(-2) = -12, \quad n \ge 0
$$

where $x(n)$ denotes causal input sequences.

- (a) Is the system relaxed? Why or why not? Solution: No, the system is not relaxed because the initial conditions are not zero.
- (b) Is the system linear? Why or why not? Solution: No, the system is non-linear because the initial conditions are not zero.
- (c) Determine the resulting sequence $y(n)$ when $x(n) = \left(\frac{1}{2}\right)$ $\frac{1}{2}$ $\int_0^n u(n)$. Solution: If we introduce a new input sequence

$$
x'(n) \triangleq x^2(n) = \left(\frac{1}{4}\right)^n u(n)
$$

it is then equivalent to consider the following first-order difference equation:

$$
y(n) + \frac{1}{12}y(n-1) - \frac{1}{12}y(n-2) = x'(n), \quad y(-1) = 0, \quad y(-2) = -12, \quad n \ge 0
$$

In this system, the output sequence $y(n)$ can be expressed $y(n) = y_{zi}(n) + y_{zs}(n)$. The characteristic function for the homogeneous equation is

$$
\lambda^2 + \frac{1}{12}\lambda - \frac{1}{12} = 0
$$

Solving it we get the modes of the difference equation:

$$
\lambda_1=-\frac{1}{3},~~\lambda_2=\frac{1}{4}
$$

Therefore, the homogeneous solution can be expressed in the following form:

$$
y_{zi}(n) = C_1 \left(-\frac{1}{3}\right)^n + C_2 \left(\frac{1}{4}\right)^n, \quad n \ge 0
$$

Using the initial conditions $y(-1) = 0$ and $y(-2) = -12$, we get

$$
\begin{cases}\ny(-1) = -3C_1 + 4C_2 = 0 \\
y(-2) = 9C_1 + 16C_2 = -12\n\end{cases}\n\Longrightarrow\n\begin{cases}\nC_1 = -\frac{4}{7} \\
C_2 = -\frac{3}{7}\n\end{cases}
$$

The zero-input response is thus

$$
y_{zi}(n) = \left[-\frac{4}{7} \left(-\frac{1}{3} \right)^n - \frac{3}{7} \left(\frac{1}{4} \right)^n \right] u(n)
$$

EE113 – Fall 2014 $\frac{4}{100}$

We now proceed to find the impulse response $h(n)$ for the following causal LTI system:

$$
y(n) + \frac{1}{12}y(n-1) - \frac{1}{12}y(n-2) = x'(n)
$$
, relaxed

Setting the input $x(n) = \delta(n)$ we get

$$
h(n) + \frac{1}{12}h(n-1) - \frac{1}{12}h(n-2) = \delta(n)
$$

Since we know that $h(n) = 0$ for $n < 0$, we can get two conditions $h(-1) = 0$ and $h(0) = 1$ to solve the homogeneous solution:

$$
\begin{cases}\nh(-1) = -3C_1 + 4C_2 = 0 \\
h(0) = C_1 + C_2 = 1\n\end{cases} \implies \begin{cases}\nC_1 = \frac{4}{7} \\
C_2 = \frac{3}{7}\n\end{cases}
$$

Therefore, the impulse response is

$$
h(n) = \left[\frac{4}{7}\left(-\frac{1}{3}\right)^n + \frac{3}{7}\left(\frac{1}{4}\right)^n\right]u(n)
$$

The zero-state response for $x'(n)$ can be found by

$$
y_{zs}(n) = h(n) \star x'(n)
$$

\n
$$
= \sum_{k=-\infty}^{\infty} \left[\frac{4}{7} \left(-\frac{1}{3} \right)^k + \frac{3}{7} \left(\frac{1}{4} \right)^k \right] u(k) \left(\frac{1}{4} \right)^{n-k} u(n-k)
$$

\n
$$
= \sum_{k=0}^n \left[\frac{4}{7} \left(-\frac{1}{3} \right)^k + \frac{3}{7} \left(\frac{1}{4} \right)^k \right] \left(\frac{1}{4} \right)^{n-k} u(n)
$$

\n
$$
= \left(\frac{1}{4} \right)^n \sum_{k=0}^n \left[\frac{4}{7} \left(-\frac{1}{3} \right)^k + \frac{3}{7} \left(\frac{1}{4} \right)^k \right] 4^k u(n)
$$

\n
$$
= \left(\frac{1}{4} \right)^n \sum_{k=0}^n \left[\frac{4}{7} \left(-\frac{4}{3} \right)^k + \frac{3}{7} \right] u(n)
$$

\n
$$
= \frac{3}{7} (n+1) \left(\frac{1}{4} \right)^n u(n) + \frac{4}{7} \left(\frac{1}{4} \right)^n \frac{1 - \left(-\frac{4}{3} \right)^{n+1}}{1 + \frac{4}{3}} u(n)
$$

\n
$$
= \frac{3}{7} (n+1) \left(\frac{1}{4} \right)^n u(n) + \frac{12}{49} \left(\frac{1}{4} \right)^n u(n) + \frac{16}{49} \left(-\frac{1}{3} \right)^n u(n)
$$

\n
$$
= \frac{3}{7} n \left(\frac{1}{4} \right)^n u(n) + \frac{33}{49} \left(\frac{1}{4} \right)^n u(n) + \frac{16}{49} \left(-\frac{1}{3} \right)^n u(n)
$$

The complete solution is then obtained as

$$
y(n) = y_{zi}(n) + y_{zs}(n) = \frac{3}{7}n\left(\frac{1}{4}\right)^n u(n) + \frac{12}{49}\left(\frac{1}{4}\right)^n u(n) - \frac{12}{49}\left(-\frac{1}{3}\right)^n u(n)
$$

(d) Determine the z-transform and ROC of $y(n)$ from part (c). **Solution:** The *z*-transform of $y(n)$ is

$$
Y(z) = \frac{3}{28} \frac{z}{\left(z - \frac{1}{4}\right)^2} + \frac{12}{49} \frac{z}{z - \frac{1}{4}} - \frac{12}{49} \frac{z}{z + \frac{1}{3}}
$$

EE113 – Fall 2014 $\overline{5}$ of 7

with the ROC as

$$
\text{ROC: } \left\{ |z| > \frac{1}{3} \right\} \bigcap \left\{ |z| > \frac{1}{4} \right\} = \left\{ |z| > \frac{1}{3} \right\}
$$

(e) What would the response $y(n)$ be if the initial conditions are each multiplied by 14 and the input sequence of part (c) is multiplied by 7?

Solution: Note that scaling $x(n)$ by 7 results in scaling $x'(n) = x^2(n)$ by 49. By the superposition properties of $y_{zi}(n)$ and $y_{zs}(n)$, the response $y(n)$ becomes

$$
y_n = 14y_{zi}(n) + 49y_{zs}(n) = 21n\left(\frac{1}{4}\right)^n u(n) + 27\left(\frac{1}{4}\right)^n u(n) + 8\left(-\frac{1}{3}\right)^n u(n)
$$

4. (10 PTS) Consider the causal LTI system

$$
y(n) = \frac{1}{2}y(n-1) + \left(\frac{1}{3}\right)^{2n} \cos(\pi n) u(n-2), \quad n \ge 0
$$

Use the *z*-transform technique to determine $y(n)$.

Solution: We can rewrite the causal LTI system as the following relaxed difference equation:

$$
y(n) = \frac{1}{2}y(n-1) + x(n), \quad n \ge 0
$$

with the input sequence $x(n)$ as

$$
x(n) = \left(\frac{1}{3}\right)^{2n} \cos(\pi n) u(n-2)
$$

$$
= \left(\frac{1}{9}\right)^n (-1)^n u(n-2)
$$

$$
= \left(-\frac{1}{9}\right)^n u(n-2)
$$

$$
= \left(\frac{1}{9}\right)^2 \left(-\frac{1}{9}\right)^{n-2} u(n-2)
$$

The z-transform of $x(n)$ is

$$
X(z) = \left(\frac{1}{9}\right)^2 z^{-2} \frac{z}{z + \frac{1}{9}} = \left(\frac{1}{9}\right)^2 \frac{z^{-1}}{z + \frac{1}{9}}, \quad |z| > \frac{1}{9}
$$

By taking the z-transform on both sides of the difference equation we get

$$
Y(z) - \frac{1}{2}z^{-1}Y(z) = X(z)
$$

Then, we have

$$
Y(z) = \frac{X(z)}{1 - \frac{1}{2}z^{-1}}
$$

= $\frac{zX(z)}{z - \frac{1}{2}}$
= $\left(\frac{1}{9}\right)^2 \frac{1}{(z - \frac{1}{2})(z + \frac{1}{9})}$

Note that since the input $x(n)$ is a causal sequence, the output $y(n)$ is also a causal sequence. Therefore, the ROC of $Y(z)$ is $|z| > \frac{1}{2}$ $\frac{1}{2}$. To find $y(n)$, we note that

$$
Y(z) = \left(\frac{1}{9}\right)^2 \frac{1}{\left(z - \frac{1}{2}\right)\left(z + \frac{1}{9}\right)}
$$

=
$$
\left(\frac{1}{9}\right)^2 \left(\frac{\frac{18}{11}}{z - \frac{1}{2}} - \frac{\frac{18}{11}}{z + \frac{1}{9}}\right)
$$

=
$$
\frac{2}{99} \left(\frac{1}{z - \frac{1}{2}} - \frac{1}{z + \frac{1}{9}}\right)
$$

The output sequence $y(n)$ is then given by

$$
y(n) = \frac{2}{99} \left[\left(\frac{1}{2} \right)^{n-1} - \left(-\frac{1}{9} \right)^{n-1} \right] u(n-1)
$$