
EE113: Digital Signal Processing Fall 2013
Prof. Ali H. Sayed December 10, 2013
TAs: Zaid Towfic and Xiaochuan Zhao

SOLUTIONS FOR FINAL EXAMINATION

1. (10 PTS; sampling theory) Consider the following LTI system operating with a sampling
frequency equal to Fs KHz:

y(n) =
3

4
y(n− 1) +

1

2
x(n− 1)

(a) By how much will a tone at Fs/4 KHz be attenuated when filtered by this system? Is
the attenuation dependent on the value of Fs?

(b) If a tone at 4 KHz is attenuated by 2/
√
13, can you tell what the sampling frequency Fs

is?

Solution: Taking the DTFT of both sides of the difference equation, we obtain the frequency
response of the LTI system:

H(ejω) =
Y (ejω)

X(ejω)
=

1
2e

−jω

1− 3
4e

−jω
=

2e−jω

4− 3e−jω

The magnitude response of the LTI system is then given by

|H(ejω)| =
∣

∣

∣

∣

2e−jω

4− 3e−jω

∣

∣

∣

∣

=
2

|4− 3[cos(ω)− j sin(ω)]|

=
2

|(4− 3 cos(ω)) + j3 sin(ω)|

=
2

√

(4− 3 cos(ω))2 + (3 sin(ω))2

=
2

√

25− 24 cos(ω)

(a) Now, for the tone at Fs/4 KHz, its digital angular frequency is given by

ω =
Fs/4

Fs
· 2π =

π

2

Therefore, the attenuation caused by the LTI system is given by

|H(ejω)|ω=π/2 =
2

√

25− 24 cos(π/2)
=

2

5

It is obvious that the attenuation does not depend on the value of Fs.
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(b) When the attenuation |H(ejω)| is equal to 1/2, we have

2
√

25− 24 cos(ω)
=

2√
13

or

cos(ω) =
1

2

Therefore, the digital angular frequency of the tone that satisfies the above condition is
given by

ω = arccos

(

1

2

)

=
π

3

Since the corresponding analog frequency, denoted by F , is 4 KHz, the sampling fre-
quency is given by

Fs =
2π

ω
· F = 24 KHz

2. (25 PTS; difference equations; z-transform) A causal system is composed of the series
cascade of two LTI systems with impulse response sequences given by the expressions

h1(n) =

(

1

2

)2n−1

u(2n − 3), h2(n) =

(

1

2

)n

u(n− 1)

(a) Determine the transfer function of the system.

(b) Determine the impulse response sequence of the system.

(c) Determine a model in terms of a constant-coefficient difference equation for the system.
Denote its input and output sequences by x(n) and y(n), respectively.

(d) Is the system stable? What are its modes? zeros? poles?

(e) Assume the difference equation in part (c) is not relaxed. Determine initial conditions
y(−1) and y(−2) such that only the largest mode appears at the output of the system
when the input is x(n) = δ(n + 3).

Solution:

(a) We can rewrite the impulse response sequences of h1(n) and h1(n) as

h1(n) =

(

1

2

)2n−1

u(2n − 3) =

(

1

2

)2n−1

u(n − 2) =
1

8

(

1

4

)n−2

u(n − 2)

and

h2(n) =

(

1

2

)n

u(n− 1) =
1

2

(

1

2

)n−1

u(n− 1)

Therefore, we have their z–transform as

H1(z) =
1

8
· z

z − 1
4

· z−2, |z| > 1

4
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H2(z) =
1

2
· z

z − 1
2

· z−1, |z| > 1

2

The whole system is composed of the series cascade of H1(z) and H2(z). So the transfer
function of the system is

H(z) = H1(z) ·H2(z) =
1

16
· 1

(z − 1
4)(z − 1

2)z
, |z| > 1

2

(b) Using the partial fraction expansion, we have

H(z) =
1

16

(

A

z − 1
4

+
B

z − 1
2

+
C

z

)

where

A =
1

(z − 1
2 )z

∣

∣

∣

∣

∣

z= 1

4

= −16, B =
1

(z − 1
4 )z

∣

∣

∣

∣

∣

z= 1

2

= 8, C =
1

(z − 1
4)(z − 1

2 )

∣

∣

∣

∣

∣

z=0

= 8

Therefore, the impulse response sequence of the system is

h(n) = −
(

1

4

)n−1

u(n− 1) +
1

2

(

1

2

)n−1

u(n− 1) +
1

2
δ(n − 1)

(c) Let us denote the z–transform of x(n) and y(n) by X(z) and Y (z), respectively. From
the transfer function

H(z) =
1

16
· 1

(z − 1
4 )(z − 1

2)z
=

Y (z)

X(z)

Then,

16z3Y (z) − 12z2Y (z) + 2zY (z) = X(z)

Therefore we have the causal system with the constant-coefficient difference equation as

16y(n)− 12y(n − 1) + 2y(n− 2) = x(n− 3)

(d) By solving the characteristic equation

16λ2 − 12λ+ 2 = 0

we get the modes

λ =
1

4
,
1

2

The poles can be obtained by finding the roots of the denominator of H(z):
(

p− 1

4

)(

p− 1

2

)

p = 0

We then have the poles as

p = 0,
1

4
,
1

2

The number of zeros is equal to the number of poles. Therefore, we have three zeros at
the points z = ±∞,±∞,±∞.

The system is stable because it is causal and all modes have magnitude strictly less than
one.
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(e) Now we have the non-relaxed system that is described by the difference equation

16y(n)− 12y(n − 1) + 2y(n− 2) = x(n− 3), n ≥ 0

with initial conditions y(−1) and y(−2). For x(n) = δ(n+ 3), we have

16y(n)− 12y(n − 1) + 2y(n− 2) = 0, n ≥ 1

and

16y(0) − 12y(−1) + 2y(−2) = 1

The general solution of the homogeneous equation has the form

y(n) = C1

(

1

2

)n

+ C2

(

1

4

)n

for some constants C1 and C2. Using the initial conditions y(−1) and y(−2), we get

{

y(0) = 1
16 +

3
4y(−1)− 1

8y(−2) = C1 + C2

y(−1) = 2C1 + 4C2

If only the largest mode, which is λ = 1
2 , appears at the output of the system, then we

must have C2 = 0 and

4y(−1) − 2y(−2) + 1 = 0

and

y(−1) = 2C1

for any constant C1 6= 0 for the non-relaxed system. Any initial conditions y(−1)
and y(−2) satisfying the above equations are the solution. For example, we can pick
y(−1) = 1 and y(−2) = 5

2 and obtain

y(0) =
1

2
, y(1) =

1

4
, y(2) =

1

8
, ...

3. (40 PTS; filters; frequency response; transfer function) A sixth-order causal comb
(LTI) filter is described by the constant-coefficient difference equation

y(n) = α6y(n− 6) + x(n) + x(n − 6)

(a) Determine the filter transfer function.

(b) Determine the location of the zeros and poles of the filter.

(c) What are the modes of the system?

(d) Find conditions on α to ensure BIBO stability.

(e) Find the impulse response sequence of the filter.

(f) Determine the magnitude frequency response of the filter.
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(g) Determine the step response of the filter.

(h) If the filter is operating at Fs KHz, by how much will a tone at Fs

12 KHz be attenuated?

Solution:

(a) The transfer function can be found by taking the z-transform of both sides of the differ-
ence equation:

Y (z) = α6z−6Y (z) +X(z) + z−6X(z)

Solving for H(z) = Y (z)/X(z), we obtain

H(z) =
Y (z)

X(z)
=

1 + z−6

1− α6z−6

(b) The zeros can be found by solving z6 + 1 = 0. The result will be the roots of unity; the
k-th zero is located at

zk = (−1)1/6ej 2π

6
k

= ej
π

6 ej
2π

6
k

= ej(
2π

6
k+π

6
), k = 0, . . . , 5

The poles can be found by solving z6 − α6 = 0. The k-th pole is located at

pk = |α|ej 2π

6
k, k = 0, . . . , 5

(c) The characteristic equation is given by

λ6 − α6 = 0

Solving the characteristic equation, we have the the modes are located at

λℓ = |α|ej
2π

6
ℓ

for 0 ≤ ℓ ≤ 5.

(d) Since the system is causal, in order for it to be stable, all modes must be strictly inside
the unit-circle (|λℓ| < 1). This condition simplifies to

|α| < 1

(e) To compute the impulse response of the filter, we compute the inverse z-transform of
the transfer function H(z). We already factored the transfer function as

H(z) =

∏5
k=0(z − zk)

∏5
k=0(z − pk)

=

5
∑

k=0

Ak

z − pk

where the coefficients Ak can be obtained by

Ak = H(z)(z − pk)|z=pk =

∏5
ℓ=0(pk − zℓ)

∏5
ℓ 6=k(pk − pℓ)
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since the poles are distinct. Now, since the system is causal, we use the transform pair

pn−1
k u(n− 1)←→ 1

z − pk
, |z| > |pk|

to obtain

h(n) =

5
∑

k=0

Akp
n−1
k u(n− 1)

(f) To obtain the frequency response of the filter, we simply evaluate H(z) at z = ejω:

H(ejω) =
1 + e−6jω

1− α6e−6jω

To find the magnitude response, we must compute |H(ejω)|:

|H(ejω)| =
√

|H(ejω)|2

=
√

H(ejω)[H(ejω)∗]

=

√

1 + e−6jω

1− α6e−6jω
· 1 + e6jω

1− α6e6jω

=

√

2 + e−6jω + e6jω

1− α6e−6jω − α6e6jω + α12

=

√

2 + 2 cos(6ω)

1− 2α6 cos(6ω) + α12

(g) To compute the step-response, we only need to convolve the impulse response with a
step function:

ystep(n) = h(n) ⋆ u(n)

=

∞
∑

k=−∞

5
∑

ℓ=0

Aℓp
k−1
ℓ u(k − 1)u(n − k)

=

5
∑

ℓ=0

Aℓ

∞
∑

k=−∞

pk−1
ℓ u(k − 1)u(n − k)

=

5
∑

ℓ=0

Aℓp
−1
ℓ

n
∑

k=1

pkℓ

=

5
∑

ℓ=0

Aℓp
−1
ℓ w(n)u(n)

where

wℓ(n) ,

{

1−pn+1

ℓ

1−pℓ
− 1, pℓ 6= 1

n, pℓ = 1
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(h) Let Ω0 = 2πFs

12 . This frequency will map to ω0 =
π
6 . To compute by how much the tone

will be attenuated, we need to compute the magnitude response of H(ejω) and evaluate
it at ω = ω0. Before we evaluate the magnitude response, we will first compute H(ejω0).
We have

H(ejω0) =
0

1− α6
= 0

since ejω0 corresponds to a zero of the transfer function. Therefore, the tone at Fs/12
will be completely eliminated.

4. (10 PTS; DFT) Consider a sequence x(n) of length N , where N is even.

(a) What is the result of the following succession of operations on x(n)?

x(n)
DFT−→ • (−j)k−→ • DFT−→ • (−1)n−→ • IDFT−→ Y (k)

That is, x(n) is first transformed by an N–point DFT, the result is modulated by the
sequence (−j)k, transformed by a second N–point DFT, modulated again by (−1)n, and
transformed one more time by the N–point inverse DFT.

(b) How does the energy of the output sequence Y (k) relate to the energy of x(n)?

Solution: We first review some useful properties.

(i) Two consecutive DFTs: If

x(n)
DFT−→ X(k)

DFT−→ y(n)

then
y(n) = N · x(−n mod N)

This property is proved as follows:

y(n) =

N−1
∑

k=0

X(k) ·W kn
N

=

N−1
∑

k=0

[

N−1
∑

m=0

x(m) ·Wmk
N

]

·W kn
N

=
N−1
∑

m=0

x(m) ·
[

N−1
∑

k=0

W
(m+n)k
N

]

=

N−1
∑

m=0

x(m) ·N · δ(m+ n)

= N · x(−n mod N)

where δ(·) denotes the Kronecker delta and

WN
△
= e−j2π/N
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In the above derivation, we used the fact that

N−1
∑

k=0

W nk
N = N · δ(n)

(ii) Two consecutive inverse DFTs: If

x(n)
IDFT−→ Z(k)

IDFT−→ z(n)

then

z(n) =
1

N
· x(−n mod N)

This property is proved as follows:

z(n) =
1

N
·
N−1
∑

k=0

Z(k) ·W−kn
N

=
1

N
·
N−1
∑

k=0

[

1

N
·
N−1
∑

m=0

x(m) ·W−mk
N

]

·W−kn
N

=
1

N2
·
N−1
∑

m=0

x(m) ·
[

N−1
∑

k=0

W
−(m+n)k
N

]

=
1

N2
·
N−1
∑

m=0

x(m) ·N · δ(m+ n)

=
1

N
· x(−n mod N)

(iii) DFT-modulation-DFT: If

x(n)
DFT−→ X(k)

(−1)k−→ S(k)
DFT−→ w(n)

and N is even, then
w(n) = N · x((−n+N/2) mod N)

This property is proved as follows:

w(n) =

N−1
∑

k=0

S(k) ·W kn
N

=
N−1
∑

k=0

X(k) · (−1)k ·W kn
N

=

N−1
∑

k=0

X(k) ·W−kN/2
N ·W kn

N

=

N−1
∑

k=0

[

N−1
∑

m=0

x(m) ·Wmk
N

]

·W−kN/2
N ·W kn

N

=
N−1
∑

m=0

x(m) ·
[

N−1
∑

k=0

W
(m+n−N/2)k
N

]
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=
N−1
∑

m=0

x(m) ·N · δ((m + n−N/2) mod N)

= N · x((−n+N/2) mod N)

We also know that

x(n)
DFT−→ X(k)

IDFT−→ x(n)

(a) Let us denote the intermediate sequences as follows:

x(n)
DFT−→ X(k)

(−j)k−→ S(k)
DFT−→ z(n)

(−1)n−→ w(n)
IDFT−→ Y (k)

where X(k) is the DFT of x(n). We investigate this chain reversely. First, from w(n)
to Y (k), it is equivalent to

w(n)
DFT−→ W (k)

IDFT−→ w(n)
IDFT−→ Y (k)

where W (k) denotes the DFT of w(n). Therefore, by using the property for two consec-
utive IDFTs, we have

Y (k) =
1

N
·W (−k mod N)

Second, from S(k) to w(n) and then to W (k), the relation is given by

S(k)
DFT−→ z(n)

(−1)n−→ w(n)
DFT−→ W (k)

Using the property for DFT-modulation-DFT, we have

W (k) = N · S((−k +N/2) mod N)

Third, from x(n) to S(k), it is easy to verify that

S(k) = (−j)k ·X(k)

Therefore, we get

Y (k) = S((k +N/2) mod N) = (−j)k+N/2 ·X((k +N/2) mod N)

(b) The energy of Y (k) is given by

N−1
∑

k=0

|Y (k)|2 =

N−1
∑

k=0

|(−j)k+N/2 ·X((k +N/2) mod N)|2

=

N−1
∑

k=0

|X((k +N/2) mod N)|2

=
N−1
∑

k=0

|X(k)|2

Using Parseval’s relation, we have

1

N

N−1
∑

k=0

|X(k)|2 =
N−1
∑

n=0

|x(n)|2
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Therefore,
N−1
∑

k=0

|Y (k)|2 = N ·
N−1
∑

n=0

|x(n)|2

That is, the energy of Y (k) is N -fold that of x(n).

5. (10 PTS; DFT) Consider a sequence x(n) of length N , where N is even.

(a) If we apply the N–point DFT to x(n) a total of N/2 times successively, what is the
resulting sequence?

(b) If we apply the N–point DFT to x(−n mod N) a total of N times successively, what is
the resulting sequence?

Solution: We start with the simple case. Applying one DFT to x(n), we get X(k). Applying
two DFTs to x(n), we get N · x(−n mod N). Applying three DFTs to x(n) in a row is
equivalent to applying two DFTs to X(k), so we get N ·X(−k mod N). Applying four DFTs
to x(n) in a row is equivalent to applying two DFTs to N ·x(−n mod N), so we get N2 ·x(n),
which is equal to the original sequence x(n) apart from the scaling factor N2. Therefore, we
observe the following pattern:

DFTm[x(n)] =























N2ℓ · x(n), m = 4ℓ

N2ℓ ·X(k), m = 4ℓ+ 1

N2ℓ+1 · x(−n mod N), m = 4ℓ+ 2

N2ℓ+1 ·X(−k mod N), m = 4ℓ+ 3

where we use DFTm[x(n)] to denote the result of m DFTs to x(n) in a row and use ℓ to
denote an integer.

(a) If we apply the N–point DFT to x(n) a total of N/2 times successively, the resulting
sequence will depend on the value of N/2:

DFTN/2[x(n)] =























N2ℓ · x(n), N/2 = 4ℓ

N2ℓ ·X(k), N/2 = 4ℓ+ 1

N2ℓ+1 · x(−n mod N), N/2 = 4ℓ+ 2

N2ℓ+1 ·X(−k mod N), N/2 = 4ℓ+ 3

(b) Applying the N–point DFT to x(−n mod N) a total of N times successively is equivalent
to applying N–point DFT to x(n) a total of N + 2 times successively and scaling by
1/N . Therefore, the resulting sequence is given by

DFTN [x(−n mod N)] =
1

N
·DFTN+2[x(n)]

=























N2ℓ−1 · x(n), N + 2 = 4ℓ

N2ℓ−1 ·X(k), N + 2 = 4ℓ+ 1

N2ℓ · x(−n mod N), N + 2 = 4ℓ+ 2

N2ℓ ·X(−k mod N), N + 2 = 4ℓ+ 3
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6. (5 PTS; DTFT) Evaluate the following series using properties of the DTFT:

∞
∑

n=5

cos2(πn/4)

n2

Solution: The series can be expressed by

∞
∑

n=5

cos2(πn/4)

n2
=

∞
∑

n=1

cos2(πn/4)

n2
−

4
∑

n=1

cos2(πn/4)

n2

where
∞
∑

n=1

cos2(πn/4)

n2
=

∞
∑

n=1

1

n2
−

∞
∑

n=1

sin2(πn/4)

n2

and
4
∑

n=1

cos2(πn/4)

n2
=

cos2(π/4)

1
+

cos2(π/2)

4
+

cos2(3π/4)

9
+

cos2(π)

16
=

89

144

Recall from expression (13.55) in Example 13.12 in the notes that

∞
∑

n=1

1

n2
=

π2

6

Moreover, introduce the sequence

x(n) =
sin2(πn/4)

n2
=

π2

16
· sinc2(πn/4)

Then, we have
∞
∑

n=5

cos2(πn/4)

n2
=

π2

6
− 89

144
−

∞
∑

n=1

x(n)

Since x(n) is an even function of n, we have

∞
∑

n=1

x(n) =
1

2

[

∞
∑

n=−∞

x(n)− x(0)

]

where

x(0) =
π2

16
· sinc2(0) = π2

16

Using Parseval’s relation, the series
∑∞

n=−∞ x(n) can be evaluated by

∞
∑

n=−∞

x(n) =

∞
∑

n=−∞

π2

16
· sinc2(πn/4)

= π2 ·
∞
∑

n=−∞

[

1

4
· sinc(πn/4)

]

·
[

1

4
· sinc(πn/4)

]∗

= π2 · 1

2π

∫ π

−π
rect

(

ω

π/4

)

·
[

rect

(

ω

π/4

)]∗

dω
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= π2 · 1

2π

∫ π

−π
rect2

(

ω

π/4

)

dω

= π2 · 1

2π

∫ π

−π
rect

(

ω

π/4

)

dω

= π2 · 1

2π
· π
2

=
π2

4

where

rect

(

ω

ωc

)

△
=

{

1, |ω| < ωc

0, |ω| ≥ ωc
, ωc > 0

Therefore, we end up with

∞
∑

n=5

cos2(πn/4)

n2
=

π2

6
− 89

144
− 1

2

[

π2

4
− π2

16

]

=
7π2

96
− 89

144
=

21π2 − 178

288
≈ 0.101603
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