Problem 1 (24 points): Consider the four signals: $$x_1[n] = \delta[n] + \delta[n-1]$$ $x_2[n] = \delta[n] - \delta[n-1]$ $x_3[n] = \delta[n-2] + \delta[n-3]$ $x_4[n] = \delta[n-2] - \delta[n-3]$ (a) (8 points) Express the signal $x[n] = \begin{cases} 1, 3, -1, 0 \\ n=0 \end{cases}$ as a function of the signals $x_i[n]$. (b) (8 points) Consider again the signals $x_i[n]$ i = 1, 2, 3, 4 and x[n] from part (a) of this problem. You are given that the convolution of the signals $x_1[n]$ with y[n] gives the signal $z_1[n]$, that is, You are also given that Calculate the convolution x[n] * y[n] as a function of $z_1[n]$ and $z_2[n]$. 7, (r)= y(n)+y[n-1] 7, [n] = y[n-2] - y[n-3] (c) (8 points) The periodic extension of a signal x[n] that has length N, is defined to be the signal $x_p[n]$ that simply repeates x[n] every N samples, that is, $$x_p[n] = \sum_{k=-\infty}^{\infty} x[n - kN]$$ (i) (4 points) Consider the periodic extension of the signals $x_1[n]$ and $x_2[n]$ that are given in part (a) of this problem. Are any of these signals even for N=2? If yes which ones? Xip [n] XIDE-NJ = XIDENJ -> even for all n + O but @ n=0/ xipt-0] \$-xipto] \$0 XIPTINZ -> Xzp[0] 7-Xzp[-0], not even neither even (ii) (4 points) Now consider the periodic extension of the signals $x_3[n]$ and $x_4[n]$ that are given in part (a) of this problem. Are any of these signals even for N=4? If yes which ones? $A_1 \times_3 \qquad \qquad X_4 \qquad \qquad X_{\frac{3}{2}} \xrightarrow{\frac{1}{2}} \xrightarrow{\frac{3}{2}}$ X3,0 > (-)-2-10 123 X [1] \$ x[-1], not even X41P 7 1-1-10 123 45 x[1] fx[-1], not even Neither even Problem 2 (40 points): The following questions are not related to each other. - (a) (8 points) A one-dimensional linear classifier takes as input a feature value x and outputs 1 if x is larger than a constant A and zero otherwise. - (i) (4 points) Is this system linear? Y=xx I for x >A, -> ythJ= L(x-A) where U[0]=0 y tn] = w [x [n] - A] Let x1 = (= 1) and x2 = (= 1) such trait 4, =0, 42 = 0 -> Let x3 = 0 x1 + Bx2 = 30 A + 3 BA (1-5) where a and B are positive integers → Then 1/3 = (2/3/A(α+β)) → = 1 since α+β 22 → # dy, + Byz = 0 (ii) (4 points) Is the system time invariant? Let $y_k = x[n-k]$ so $y_k = u[x_k - A] = u[u] = 0$ $\rightarrow y = u[x[n-k] = A] = y[n-k]$ Thus, the system is time Invariant (b) (12 points) Assume that the system y[n] = f(x[n]), where f() is some unknown function, is Linear Time Invariant (LTI). Can you determine if the following systems are LTI? Briefly explain why. (i) (4 points) $$z[n] = y[n-5] + y[n-2]$$ where ayild # azim, ayild azzin Liveer (ii) (4 points) $z[n] = y^2[n]$ Linearity 1: Let y, = aytn? -> Z, [n] = a y [n] Y2 = 6 y [n] -> 22 [n] = 62 y2 [n] As can be observed, zitn] + aztn] = 72[v] \$ b Z[n] Not Linear Thus, [not [7]) ## (iii) (4 points) z[n] = y[2n] Time Variace, Let Yr= y [n-11] Figure 1: System for Problem 2(c) - (c) (20 points) Consider a relaxed system as shown in Fig. 1 - (i) (8 points) Can you write the input-output equations for this system? $$y = x = \alpha = 1 + c = 1$$ $$= x = x = 1 + b = 1 + c = 1 + c = 1$$ $$= 2x = 1 + a = 1 + c = 1 + c = 1$$ $$= 2x = 1 + c = 1 + c = 1 + c = 1$$ $$= 2x = 1 + c = 1 + c = 1 + c = 1$$ $$= 2x = 1 + 2x = 1 + c = 1 + c = 1 + c = 1$$ (ii) (4 points) Is this a BIBO stable system? (explain why?) if $$|x | \le B$$ for all n , then $|y | = 2 \sum_{k=0}^{\infty} |x | = n - k$. $|x | = 0$ TNO+ BIBO stable 4 (iii) (8 points) Assume you connect two of these relaxed systems, shown in Fig. 1, in series, what is the impulse response of the overall equivalent system? $$\times [n] \rightarrow y[n] \rightarrow z[n]$$ $$= 2 \sum_{k=0}^{\infty} x[n-k] - 2 \sum_{j=0}^{\infty} y[n] x[j]$$ $$-2[n] = \sum_{j=0}^{\infty} y[n-j] - 2\sum_{j=0}^{\infty} (2\sum_{k=0}^{\infty} x[n-j-k]) = 4\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} x[n-j-k]$$ $$N_{1}[n] = 2\sum_{k=0}^{\infty} 2 i n[n-k] = 4\sum_{k=0}^{\infty} \alpha [n-k]$$ **Problem 3 (36 points):** The following questions are not related to each other. (a) (14 points) True or false: Let x[n] be a real periodic signal with even period N, and c_k be the coefficients of its associated discrete-time Fourier series. Then, there always exist j_1 , j_2 such that c_{j_1} and c_{j_2} are purely real. Mathematically justify your answer. a. ((Let atn), detn) $\phi_1 = e^{j \pi i r}$, $\phi_0 \pi \delta_2 r$ for \$ 1. A 12 to be real, then 2011 = 14. TI, 1 82 = 12TI where ki, to are integers. → 27 /2 = N h, Ti → 27 /2= N hz Ti - Y = Nki Singe kritiziare integers and Niseven, there will always exist dis tiz which are purely real, you to find constitution () in the constitution of constituti (b) (8 points) Find the discrete-time Fourier Series coefficients for the following signal: (8 points) Find the discrete-time Fourier Series coefficients for the following states $$x[n] = \sin(\frac{2\pi n}{3})\cos(\frac{\pi n}{3})$$ $$= \frac{1}{4\sqrt{3}}\left(e^{\frac{i\sqrt{3}\pi}{3}} - e^{-\frac{i\sqrt{3}\pi}{3}}\right)\left(e^{\frac{i\sqrt{3}\pi}{3}} - e^{-\frac{i\sqrt{3}\pi}{3}}\right)$$ Ex Certific $$(-1 = -\frac{1}{4})$$ $(-4 = -\frac{1}{4})$ $(-4 = -\frac{1}{4})$ 6 (c) (14 points) Assume that for a periodic signal x[n] with period N you find the DTFS coefficients c_k . As we discussed in class, the Fourier Series coefficients c_k can also be thought as the values of a periodic signal with the same period N. Lets call this periodic signal c[k], that is, $$c[k] = c_k$$ Your friend claims that if you take the Fourier Series expansion of this periodic signal c[k], you will get coefficients d_m that will be sufficient to retrieve the original signal x[m]. Are they right? Mathematically justify your answer. $$d_{m} = \frac{1}{N} \sum_{k=0}^{N-1} C[k] e^{-\frac{1}{N} \sum_{k=0}^{N-1} kn} \left(\frac{1}{N} \sum_{k=0}^{N-1} kn \right) e^{-\frac{1}{N} \sum_{k=0}^{N-1} kn} kn$$ dutin 7 = 12 2 x En Je 200 (m+k)