}/ Problem 1 (24 points): Consider the four signals: _’_j_l’_,l L

z1[n] = d[n] + d[n — 1] _'der), o
x2[n] = d[n] — d[n —1] ’
z3[n] = 0[n — 2] + 8[n — 3] _,..J% o
o
x4n] =d[n — 2] —d[n —3]
) < 4y
. ; s % 8} o st
(a) (8 points) Express the signal z[n] = % as a function of the signals x;[n]
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(b) (8 points) Consider again the signals x;[n] i = 1,2, 3,4 and z[n] from part (a) of this
problem. You are given that the convolution of the signals ;[n] with y[n| gives the

signal z)[n], that is, Y02 2 D=t _ o =
aln] = mfn] syln]  S{a )y Ted + 6Tn21] ¥y ()
You are also given that \{CWJJ* ~Te?d 77;] i \/[?v}j > _5,,(:“,‘—53 oy ]

2aln) = zfn] +yfn] 6 Tr

Calculate the convolution z[n] x y[n] as a function of z;[n] and zy[n].
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(¢) (8 points) The periodic extension of a signal z[n] that has length N, is defined to be
the signal z,[n] that simply repeates x[n| every N samples, that is,

X

z,[n] = z x[n — kN]
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(i) (4 points) Consider the periodic extension of the signals z;[n] and x2[n] that are
given in part (a) of this problem. Are any of these signals even for N = 27 If yes

which ones?
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(ii) (4 points) Now consider the periodic extension of the signals x3[n] and x4[n] that

are given in part (a) of this problem. Are any of these signals even for N = 47 If
11 ves which ones?
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Problem 2 (40 points) : The following questions are not related to each other.

(a) (8 points) A one-dimensional linear classifier takes as input a feature value z and
outputs 1 if z is larger than a constant A and zero otherwise.

(i) (4 points) Is this system linear?
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(ii) (4 points) Is the system time invariant?
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(b) (12 points) Assume that the system y[n] = f(z[n]), where f() is some unknown
function, is Linear Time Invariant (LTT). Can you determine if the following systems

are LTI? Briefly explain why.

(i) (4 points) z[n] = y[n — 5] +yln —2]
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(ii) (4 points) z[n] =y*[n] = U ( @:)
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(iii) (4 points) z[n] = y[2n]
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Figure 1: System for Problem 2(c)

(¢) (20 points) Consider a relaxed system as shown in Fig. 1

(i) (8 points) Can you write the input-output equations for this system?
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(i) (4 points) Is this a BIBO stable system? (explain why?)
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(iii) (8 points) Assume you connect two of these relaxed systems, shown in Fig. 1,

in series, what is the impulse response of the overall equivalent system?
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Problem 3 (36 points) : The following questions are not related to each other.

(a) (14 points) True or false: Let x[n] be a real periodic signal with Mand
cx be the coefficients of its associated discrete-time Fourier series. Then, there always
exist ji, jo such that ¢;, and ¢;, are purely real. Mathematically justify your answer.
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(b) (8 points) Find the discrete-time Fourier Series coeflicients for the following signal:

™

z[n] = sin(gﬂ-—n) cos(—) T Y
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(¢) (14 points) Assume that for a periodic signal x[n] with period-N you find the DTFS
coefficients ¢ As we discussed in class, t116>.f<>11ri01' Series cocfficients ¢, can also
be thought as the values of a periodic signal with the same period N. Lets call this
periodic signal c[k], that is,

clk] =
Your friend claims that if you take the Fourier Series expansion of this periodic signal
c[k], you will get coefficients d,, that will be sufficient to retrieve the original signal

x[m]. Are they right? Mathematically justify your answer.
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