Name: _____

EE 113 Digital Signal Processing

Spring 2014

Final Exam

Closed Book, 2 sheet of notes allowed

Name: _____

Student ID No.:_____

1) _____ / 10 2) _____ / 15

3) _____ / 20

4) _____ / 10

5) _____ / 20 6) _____ / 20

7) _____ / 10

8) _____ / 20

9) _____ / 10

TOTAL _____ / 125

	Sequence	z-transform	ROC	Property
1.	x(n)	X(z)	$R_x = \{r_1 < z < r_2\}$	
2.	y(n)	Y(z)	$R_y = \{r' < z < r''\}$	
3.	ax(n) + by(n)	aX(z) + bY(z)	$\{R_x \cap R_y\}$ including	1. S.

3.	ax(n) + by(n)	aX(z) + bY(z)	$\{R_x \cap R_y\}$ including possibly $z = 0$ or $z = \pm \infty$	linearity
4.	$x(n-n_0)$	$z^{-n_0}X(z)$	R_x excluding possibly $z = 0$ or $z = \pm \infty$	time-shifts
5.	$a^n x(n)$	X(z/a)	$ a r_1 < z < a r_2$	exponential modulation
6.	$(-1)^n x(n)$	X(-z)	R_x	alternating sign
7.	x(-n)	X(1/z)	$1/r_2 < z < 1/r_1$	time reversal
8.	nx(n)	$-z \frac{dX(z)}{dz}$	R_x excluding possibly $z = 0$ or $z = \pm \infty$	linear modulation
9.	$x^*(n)$	$[X(z^*)]^*$	R_x	conjugation
10.	$\operatorname{Re}\left[x(n) ight]$	$\frac{1}{2} \left[X(z) + (X(z^*))^* \right]$	R_x excluding possibly $z = 0$ or $z = \pm \infty$	real part
11.	$\operatorname{Im}\left[x(n) ight]$	$\frac{1}{2j} \left[X(z) - (X(z^*))^* \right]$	R_x excluding possibly $z = 0$ or $z = \pm \infty$	imaginary part
12.	$x(n)\star y(n)$	X(z)Y(z)	$\{R_x \cap R_y\}$ including possibly $z = 0$ or $z = \pm \infty$	convolution
13.	$y(n) = \begin{cases} x\left(\frac{n}{L}\right), & \frac{n}{L} \text{ integer} \\ 0, & \text{otherwise} \end{cases}$	$X(z^L)$	$r_1^{1/L} < z < r_2^{1/L}$	upsampling
14.	y(n) = x(2n)	$\frac{1}{2} \left[X(z^{1/2}) + X(-z^{1/2}) \right]$	$r_1^2 < z < r_2^2$	2-fold downsampling
15.	y(n) = x(Mn)	$\frac{1}{M} \sum_{k=0}^{M-1} X\left(e^{-\frac{i2\pi k}{M}} z^{1/M} \right)$	$r_1^M < z < r_2^M$	<i>M</i> -fold downsampling

Sequence	<i>z</i> -Transform	ROC
$\delta(n)$	1	С
u(n)	$\frac{z}{z-1}$	z > 1
$\alpha^n u(n)$	$\frac{z}{z-\alpha}$	$ z > \alpha $
$-\alpha^n u(-n-1)$	$\frac{z}{z-\alpha}$	$ z < \alpha $
nu(n)	$\frac{z}{(z-1)^2}$	z > 1
-nu(-n-1)	$\frac{z}{(z-1)^2}$	z < 1
$n\alpha^n u(n)$	$\frac{\alpha z}{(z-lpha)^2}$	$ z > \alpha $
$-n\alpha^n u(-n-1)$	$\frac{\alpha z}{(z-\alpha)^2}$	$ z < \alpha $
$\cos(\omega_o n) u(n)$	$\frac{z^2 - z\cos\omega_o}{z^2 - 2z\cos\omega_o + 1}$	z > 1

$\cos(\omega_o n)u(n)$	$\frac{z^2 - z\cos\omega_o}{z^2 - 2z\cos\omega_o + 1}$	z > 1
$\sin(\omega_o n)u(n)$	$\frac{z\sin\omega_o}{z^2 - 2z\cos\omega_o + 1}$	z > 1

	¥ .	
$\alpha^n \cos(\omega_o n) u(n)$	$\frac{z^2 - \alpha z \cos \omega_o}{z^2 - 2\alpha z \cos \omega_o + \alpha^2}$	$ z > \alpha $
$\alpha^n \sin(\omega_o n) u(n)$	$\frac{\alpha z \sin \omega_o}{z^2 - 2\alpha z \cos \omega_o + \alpha^2}$	$ z > \alpha $

10 pts Problem 1

Consider the following LTI system operating with a sampling frequency equal to F_s KHz:

5 pts

 $y(n) = \frac{3}{4}y(n-1) + \frac{1}{2}x(n-1)$

(a) By how much will a tone at $F_s/4$ KHz be attenuated when filtered by this system? Is the attenuation dependent on the value of F_s ?

5 pts

(b) If a tone of 4 KHz is attenuated by $\sqrt{13}$, can you tell what the sampling frequency F_s is?

2

15 pts Problem 2

A causal system is composed of the series cascade of two LTI systems with impulse response sequences given by the expressions:

$$h_1(n) = \left(\frac{1}{2}\right)^{2n-1} u(2n-3)$$
 and $h_2(n) = \left(\frac{1}{2}\right)^n u(n-1)$

5 pts

(a) Determine the transfer function of the system

5 pts

(b) Determine the impulse response sequence of the system

5 pts

(c) Is the system stable? What are its zeros? Poles?

20 pts Problem 3

$$H(z) = \frac{1 + 2z^{-1} + z^{-2}}{(1 + 0.5z^{-1})(1 - 0.75z^{-1})}$$

A causal LTI system has the transfer function:

5 pts (a) Find the impulse response of this system

A causal LTI system has the transfer function: 5 pts (a) Find the impulse response of this system

(a) Find the impulse response of t
 5 pts

(b) Find the output of the system, y(n) for an input $X(n) = e^{\int_{2}^{\frac{\pi}{2}n} n}$

 $(1+0.5z^{-1})(1-0.75z^{-1})$

5 pts

(c) Find the LCCDE that relates the input and output of the system

5 pts

(d) Sketch the block diagram of the system using only 2 delay elements

10 pts Problem 4

The figure below shows 2 finite-length sequences:

5 pts

(a) Find their 6-Point circular convolution of the two sequences

5 pts (b) Without computing the linear convolution of the two signals determine whether or not the answer for part (a) equals the linear convolution of the 2 signals.

20 pts Problem 5

The figure below shows the frequency response of a LTI system with $|H_{(e^{j\omega})}|$ 3 pts (a) Is the system BIBO stable? Why? (b) Is the system realizable? 3 pts $-\omega_c$ we ω (rad/sample) Why? 3 pts (c) Find the energy of the $\angle H \quad (e^{j\omega}) = -k_o\omega$ impulse response sequence. 5 pts (d) Find the impulse $-\omega_c$ ω (rad/sample) response sequence of the

5 pts (d) Find the impulse response sequence of the system.

6 pts (e) What is the response of the system to:

$$x(n) = \sin^2\left(\frac{\pi}{6}n - \frac{\pi}{4}\right)$$

10 pts Problem 6:

⁵ pts (a) Sketch the magnitude of the frequency response for each of the following pole-zero plots. Please provide the reasoning behind your sketches. Be sure to indicate the angular frequency for "points of interest" (e.g. places wehre the response peaks or reaches a local minima, etc.)

5 pts (b) How do the magnitude responses of the following two pole-zero plots differ?

10 pts Problem_7:_

A causal system is described by the difference equation:

y(n) + 2y(n-1) + 2y(n-2) = x(n) y(-1)=0 y(-2)=1.

$$x(n) = \left(\frac{1}{3}\right)^n u(n-1)$$

Use the unilateral z-transform to find its complete response to

$$x(n) = \left(\frac{1}{3}\right) \quad u(n-1)$$

Use the unilateral z-transform to find its complete response to

20 pts Problem 8:

$$y(n) - \frac{1}{2}y(n-2) = x(n^2)$$

A relaxed system is described by the equation (a) is the system linear?

5 pts (b) is the system time invariant? 5 pts

(c) is the system causal?

5 pts

5 pts

(d) is the system BIBO stable?

Please be sure to justify your answer to the above via either a proof or a counter example.

10 pts Problem 9:

The figure shows the pole-zero plot for the transfer function of an LTI system. 5 pts

(a) How many possible two sided sequences are possible for the pole-zero plot shown in the figure?

5 pts (b) If the system is causal, can it also be stable? Explain.

