EE 113 Digital Signal Processing

Spring 2017 Quiz-1

Closed Book

Name: SOLUTIONS

Student ID No.:_____

- 1) _____/ 10
- 2) _____/10

3) _____/ 10

4) _____/ 20

TOTAL ____ / 50

Name: _____

TABLE 20.1	Several	properties	of the	Fourier	Transform.
INDEE EV.I	Dereita	properties	or the	A COMPACE	A . Carron Or inter

	Sequence	DTFT	Property
1.	x(n)	$X(e^{j\omega})$	(14.1)
2.	y(n)	$Y(e^{j\omega})$	(14.2)
3.	ax(n) + by(n)	$aX(e^{j\omega}) + bY(e^{j\omega})$	linearity
4.	$x(n-n_0)$	$e^{-j\omega n_0}X(e^{j\omega})$	time-shifts
5.	$e^{j\omega_o n}x(n)$	$X(e^{j(\omega-\omega_o)})$	frequency shifts
6.	$\cos(\omega_o n)x(n)$	$\frac{1}{2}X\left(e^{j(\omega-\omega_o)}\right) + \frac{1}{2}X\left(e^{j(\omega+\omega_o)}\right)$	modulation
	$\sin(\omega_o n) x(n)$	$\left \frac{1}{2j} X\left(e^{j(\omega-\omega_o)} \right) - \frac{1}{2j} X\left(e^{j(\omega+\omega_o)} \right) \right $	
7.	x(-n)	$X(e^{-j\omega})$	time-reversal
8.	nx(n)	$j \frac{dX(e^{j\omega})}{dw}$	linear modulation
9.	$x(n) \star y(n)$	$X(e^{j\omega})Y(e^{j\omega})$	convolution
10.	x(n)y(n)	$X(e^{j\omega})\circ Y(e^{j\omega})$	multiplication
11.	$x^*(n)$	$[X(e^{-j\omega})]^*$	conjugation

signal	Fourier Transform	property
x(t)	$X(j\Omega)$	
y(t)	$Y(j\Omega)$	
ax(t) + by(t)	$aX(j\Omega) + bY(j\Omega)$	linearity
x(at)	$\frac{1}{ a }X(\frac{j\Omega}{a})$	scaling
X(t)	$2\pi \cdot x(-j\Omega)$	duality
$x(t-t_o)$	$e^{-j\Omega t_o}X(j\Omega)$	time-shifts
$e^{j\Omega_o t}x(t)$	$X(j\Omega - j\Omega_o)$	modulation
$\int_{-\infty}^t x(\tau) d\tau$	$\frac{1}{j\Omega} X(j\Omega) + \pi \cdot X(0) \cdot \delta(j\Omega)$	integration
$\frac{dx(t)}{dt}$	$j\Omega \cdot X(j\Omega)$	differentiation
$\int_{-\infty}^{\infty} x(\lambda) y(t-\lambda) d\lambda$	$X(j\Omega)Y(j\Omega)$	convolution
x(t)y(t)	$rac{1}{2\pi}\int_{-\infty}^{\infty}X(j\lambda)Y(j\Omega-j\lambda)d\lambda$	multiplication
	$\int_{-\infty}^{\infty} x(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\Omega) ^2 d\Omega$	Parseval's relation

TABLE 13.1 Some useful DTFT pairs over the interval $\omega \in [-\pi, \pi]$.

Sequence $x(n)$	DTFT $X(e^{j\omega})$ over one period
$x(n) = \delta(n)$	$X(e^{j\omega}) = 1$
$x(n) = \begin{cases} 1, & 0 \le n \le L - 1\\ 0, & \text{otherwise} \end{cases}$	$X(e^{j\omega}) = \begin{cases} L, & \omega = 0\\ e^{-j\omega}\frac{(L-1)}{2} \cdot \frac{\sin(\omega L/2)}{\sin(\omega/2)}, & \text{otherwise} \end{cases}$
$x(n) = \alpha^n u(n), \ \alpha < 1$	$X(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}}$
$x(n) = -\alpha^n u(-n-1), \ \alpha > 1$	$X(e^{j\omega}) = \frac{1}{1 - \alpha e^{-j\omega}}$
$x(n)=rac{\omega_c}{\pi}\mathrm{sinc}(\omega_c n)$	$X(e^{j\omega}) = \begin{cases} 1, & w < w_c \\ 0, & w_c \le w \le \pi \end{cases}$
$x(n) = e^{j\omega_o n}$	$X(e^{j\omega}) = 2\pi\delta(\omega - \omega_o)$
$x(n) = \cos(\omega_o n), \ \omega_o \in [-\pi, \pi]$	$X(e^{j\omega}) = \pi \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right]$
$x(n) = \sin(\omega_o n), \ \ \omega_o \in [-\pi,\pi]$	$X(e^{j\omega}) = -j\pi \left[\delta(\omega-\omega_0) - \delta(\omega+\omega_0) ight]$

Name:

10 pt Problem 1:

The Nyquist rate of x(t) is 10 radians/s. What is the nyquist rate for each of the following. Please explain your answer. No points will be given without an explanation (a) y(t) = x(t) * x(t)

(b)
$$y(t) = \operatorname{sinc}\left(\frac{\Omega_o}{2}t\right)x(t)$$
 where $\Omega_o = 2rads / \sec$

(b)
$$y(t) = sinc(\frac{ro}{2}t) x(t)$$

 $a(t)$

*Name:*_____

Name:

10 pt Problem 2:

Find the DTFT of the following functions. Please be sure to show your work as no points will be given for simply stating the final answer.

(a)
$$x(n) = \cos\left(\frac{\pi}{3}n\right) \sin\left(\frac{\pi}{3}n\right)$$

(b)
$$x(n) = \left(\frac{1}{2}\right)^{3n+2} u(n-3)$$

(c)
$$x(n) = \frac{1}{2} \begin{cases} e^{j\frac{\pi}{3}n} + e^{-j\frac{\pi}{3}n} \\ + e^{-j\frac{\pi}{3}n} \end{cases} = \frac{1}{2^{j}} \begin{cases} e^{j\frac{2\pi}{3}n} - e^{j\frac{\pi}{3}n} \\ - e^{j\frac{2\pi}{3}n} \end{cases}$$

$$= \frac{1}{2^{j}} \begin{cases} e^{j\frac{2\pi}{3}n} \\ - 1 + 1 - e^{-j\frac{\pi}{3}n} \end{cases}$$

$$x(e^{jw}) = \frac{\pi}{2^{j}} \left[\delta(w - \frac{2\pi}{3}) - \delta(w + \frac{2\pi}{3}) \right]$$

*Name:*_____

Name: _

10 pt Problem 3:

Find the DTFT of y(n) and then sketch its magnitude and phase response. Be sure to show your work.

$$y(n) = x(2n)$$

where
$$x(n) = \frac{\sin\left(\frac{\pi}{8}(n-2)\right)}{(n-2)}$$

 $\chi(e^{j\omega}) = \begin{cases} \pi e^{-j^{2}\omega} & (\omega) < \pi \\ 0 & 0 \end{cases}$
 $o \notin erwise$

$$Y(e^{jw}) = \frac{1}{2} \sum_{l=0}^{l} X_{le} \frac{j(w + 2\pi l)}{2} = \frac{1}{2} \left(X(e^{jw/2}) + X(e^{j(w - \pi)}) \right)$$

Name:

Name:

20 pt Problem 4:

We start with an analog signal x(t) given below

 $x(t) = \cos(2\pi \, 150 \, t) + 0.3 \sin(2\pi \, 1900 \, t) + 0.7 \cos(2\pi \, 3300 \, t)$

x(t) is then sampled at a sampling frequency of 4000 Hz to generate the sequence $\{x(n)\}$ The sequence $\{x(n)\}$ is then filtered by a brick wall (ideal) Low Pass Filter with a cutoff

frequency $w_c = \frac{\pi}{2}$ to generate the sequence y(n) The sequence y(n) is then used to create the analog pulse train $s(t) = \sum y(n) \delta\left(t - n\frac{1}{4000}t\right)$

S(t) in turn is passed through an analog filter with impulse response $h_{sinc}(t) = sinc(\pi 4000 t)$ to produce the analog signal z(t)

- (a) give an expression for x(n)
- (b) sketch the magnitude response of $X(e^{jw})$ from -pi to pi
- (c) give an expression for y(n)

(d) sketch the magnitude response of S(f)

(e) give an expression for z(t)

$$\begin{array}{c} \textcircled{(1)} \chi(n) = \ \cosh\left(2\pi \frac{156}{4000}n\right) + 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{3300}{4000}n\right) \\ \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) + 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{4000-3300}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) + 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{4000-3300}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) - 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{700}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) - 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{700}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) - 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{700}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) - 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{700}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{150}{4000}n\right) - 0.3 \ \sin\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{700}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{400}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{4000}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{4000}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{400}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{400}n\right) + 0.7 \ \cosh\left(2\pi \frac{1900}{400}n\right) \\ \hline \chi(n) = \ \cosh\left(2\pi \frac{1900}{400}n\right) + 0.7 \ \cosh\left(2\pi$$

(2) since we for h(r) is I the term corresponding to w= 0.25 T will be fultered out & Thus y(n) will only contain The 1st and last terms of x(n)

(E) Z(t) = Cup (2TT 150t) + 0.7 con (2TT 700t)

10 of 12

Name: _____

_

11 of 12

Name: _____

12 of 12