EE 113 Digital Signal Processing

Spring 2013

Midterm Exam

Closed Book, 1 sheet of notes allowed

Name:

Student ID No.:_____

- 1) _____/ 10
- 2) _____/ 10
- 3) _____/ 10

4) _____/ 10

- 5) _____/ 10
- 6) _____/ 10

TOTAL _____ / 60

<u>Problem 1</u> (10 pts) Find the energy and the average power of the following sequence:

$$x(n) = \left(\frac{1}{3}\right)^n u(n-1) + \left(\frac{1}{2}\right)^{n-1} u(n-2)$$

Problem 2 (10 pts)

What is the sequence that results from sampling $x(t) = \cos(50\pi t)$ at the rate of 150 samples per second? What is the angular frequency and period of the sequence? Can you suggest a different sampling rate of getting the same exact sequence?

Problem 3 (10 pts)

A relaxed system is described by the difference equation

$$y(n) - \frac{1}{2}y(n-1) = x^2(n)$$

where x(n) denotes the input sequence and y(n) denotes the output sequences. Prove or give counter-examples:

(a) Is the system linear?

(b) Is the system time-invariant?

(c) Is the system causal?

(d) Is the system BIBO stable?

Problem 4 (10 pts)

For the system given below:

$$y(n) = -\frac{1}{4}y(n-1) + x(n-1), \quad y(-1) = 1, \quad n \ge 0$$

(a) Find the impulse response sequences of the system.(b) Sketch the block diagram representation of the system.

(c) Is the system LTI?

Midterm: EE 113, Spring 2013

Name: _____

Problem 5 (10 pts)

The response of a relaxed LTI system to x(n) = u(n-2) is $y(n) = \left(\frac{1}{2}\right)^{n-2} u(n-4)$. Find its impulse response sequence. Is this a BIBO stable system?

<u>Problem 6</u> (10 pts) For the following system, determine whether or not the system is causal, linear, timeinvariant, and memoryless:

$$y(n) = \sum_{k=n-n_o}^{n+n_o} x(k)$$

Problem 1: $\mathcal{E}_{\mathsf{X}} = \frac{+\infty}{2} |\chi(n)|^2$ $= \sum_{n=1}^{+\infty} \left| \left(\frac{1}{3}\right)^{n} u(n-1) + \left(\frac{1}{2}\right)^{n-1} u(n-2) \right|^{2}$ $= \sum_{n=-10}^{+100} \left[\left(\frac{1}{9}\right)^n u(n-1) + \left(\frac{1}{4}\right)^{n-1} u(n-2) + 2\left(\frac{1}{3}\right)^n \left(\frac{1}{2}\right)^{n-1} u(n-2) \right]$ $= \sum_{n=1}^{+\infty} (\frac{1}{4})^{n} + 4\sum_{n=2}^{+\infty} (\frac{1}{4})^{n} + 4\sum_{n=2}^{+\infty} (\frac{1}{4})^{n}$ $= \frac{1}{1-\frac{1}{2}} + 4 \frac{(\frac{1}{4})^2}{1-\frac{1}{2}} + 4 \frac{(\frac{1}{4})^2}{1-\frac{1}{2}}$ $=\frac{71}{120} \simeq 0.5917$ Px = 0 since this sequence is an energy sequence

$$rate = 150 \text{ samples / second}$$

$$rate = \frac{n}{150}$$

$$x(n) = \cos(50\pi \frac{n}{150}) = \cos(\frac{\pi}{3}n)$$

Augular frequency = $\frac{\pi}{3}$ radscupla
Period = $\frac{2\pi}{\pi/3} = 6$ samples.
Let sampling rate be R samples / second.
We want $50\pi \frac{n}{R} = (\frac{\pi}{3} + 2k\pi)n$ $k \in \mathbb{Z}$

$$R = \frac{150}{1+6k}$$
 $k \in \mathbb{Z}$

$$R = \frac{150}{1+6k}$$
 $k \in \mathbb{Z}$

$$R = \frac{150}{1+6k}$$
 $k \in \mathbb{Z}$

$$rate = \frac{150}{13}$$
 or $\frac{150}{13}$ or $\frac{150}{19}$ or 6 or $\frac{150}{31}$
Samples
(second

1 secono

3
(a). No. Counter-example:
$$x_{1}(n) = S(n)$$

Let $\chi(n) = S[\chi(n)]$. $\chi_{2}(n) = S[2\chi(n)]$
 $2\chi_{1}(o) = 2 \neq 4 = \chi_{2}(o)$
 \therefore It is not linear.
(b) Yes. Let $\chi(n) = S[\chi(n)]$. $\chi_{k}(n) = S[\chi(n-k)]$
 $\chi(n) = \chi^{2}(n) + \frac{1}{2}\chi(n-1)$
 $= \chi^{2}(n) + \frac{1}{2}\chi^{2}(n-1) + \frac{1}{4}\chi(n-2)$
 \vdots
 $= \sum_{m=0}^{\infty} (\frac{1}{2})^{m} \chi^{2}(n-m)$
 $\chi_{k}(n) = +\chi^{2}(n-k) + \frac{1}{2}\chi_{k}(n-1)$
 $= \chi^{2}(n-k) + \frac{1}{2}\chi^{2}(n-k-1) + \frac{1}{4}\chi_{k}(n-2)$
 \vdots
 $= \sum_{m=0}^{\infty} (\frac{1}{2})^{m} \chi^{2}(n-k-1) + \frac{1}{4}\chi_{k}(n-2)$
 \vdots
 $= \chi(n-k)$
 \vdots It is come-invariant

(c) Yes. : y(n) =
$$\sum_{m=0}^{\infty} (\pm)^m x^*(n-m)$$

By definition, it depends only on $x(k)$ for $k \leq n$.
.: It is causel.

(d) Yes. Let $|X(n)| = B_x = \infty$. $\forall n$.

$$|y(n)| = \left| \sum_{m=0}^{\infty} \left(\frac{1}{2} \right)^{m} \chi^{2}(n-m) \right|$$

$$\leq \sum_{m=0}^{\infty} \left| \left(\frac{1}{2} \right)^{m} \chi^{2}(n-m) \right|$$

$$\leq \sum_{m=0}^{\infty} \left(-\frac{1}{2} \right)^{m} B_{\chi}^{2}$$

$$= 2 B_{\chi}^{2} < \infty$$

. It is BIBO stable.

Problem 4 (a) We use the zero-state + zero-input method to solve for the impulse recponse of the system 1) The zero-state part: y(n) = - + y(n-1) + S(n-1), relaxed The characteristic function is given by $\lambda = - 2$ The general solution is $y_{h(n)} = c \lambda^{n} = c (-\frac{1}{4})^{n} , n \ge 2$ When n=0; $y(0) = -\frac{1}{2} \cdot 0 + 0 = 0$ n=1. $y(i) = -2 \cdot 0 + 1 = 1$ n=2: $Y(2) = -\frac{1}{4} \cdot 1 + 0 = -\frac{1}{4} = C \cdot (-\frac{1}{4})^2$ $\Rightarrow c = -4$ Thus, $Y_{2s}(n) = \begin{cases} 0, & n \le 0 \\ 1, & n = 1 \end{cases}$ $\gamma = (-\frac{1}{4})^{n-1} u(n-1)$ $\left(\left(-\frac{1}{2} \right)^{n-1}, n = 2 \right)$ 2) The zero-input part $y(n) = -\frac{1}{4}y(n-i), \quad y(-i) = 1$ - Using the general solution, we get : $\mathcal{Y}_{hln}) = C\lambda^{n} = C(-\frac{1}{2})^{n}, \forall n$ When n=-1: $C(-\frac{1}{4})^{-1} = Y(-1)=1 \implies C=-\frac{1}{4}$

Thus, Yzi(n) = (-2) +1 , Yn 3) We conclude that, for n 20. $Y(n) = Y_{23}(n) + Y_{2i}(n)$ $= (-\frac{1}{4})^{n-1} u(n-1) + (-\frac{1}{4})^{n+1} u(n)$ $= -\frac{1}{4} S(n) + 17(-\frac{1}{4})^{n+1} u(n-1)$ where we set Yziln) = (-2)" u(n) for n > 0 since this is satisfied by Yzi(n) = (-2)ⁿ⁺¹, In (and we don't care about the values for n <0 --- see the problem statement) (6)X(n) ⇒ Y(n) (C) The system is NOT LTI since the non-yers initial conditions

$$\frac{5}{5} S[S(n)] = S[u(n) - u(n-1)] = S[u(n)] - S[u(n-1)]
= S[X(n+2)] - S[X(n+1)] = y(n+2) - y(n+1)
= (\frac{1}{2})^{n} u(n-2) - (\frac{1}{2})^{n-1} u(n-3)
= \frac{1}{4} S(n-2) + [(\frac{1}{2})^{n} - (\frac{1}{2})^{n-1}] u(n-3)
= \frac{1}{4} S(n-2) - (\frac{1}{2})^{n} u(n-3)$$

Problem 6 1) if noz1, then the system is described by. $y(n) = \sum_{k=n-n_0}^{n+n_0} \chi(k)$ $= \chi(n-1) + \chi(n) + \chi(n+1) + \cdots$ The system is non-causal, linear, time-invariant, and dynamic. z) if $n_0 = 0$, then $Y(n) = \chi(n)$ The system is causal, linear, time-invariant, and memoryless.