EE 113 Digital Signal Processing

Spring 2013

Midterm Exam

Closed Book, 1 sheet of notes allowed

Student ID No.:_________________________

- 1) $\frac{1}{\sqrt{10}}$
- 2) ________ / 10
- 3) ________ / 10

4) $\frac{4}{\sqrt{10}}$

- 5) $\frac{1}{\sqrt{10}}$
- 6) $\frac{1}{2}$ / 10

TOTAL _________ / 60

Problem 1 (*10 pts*)

Find the energy and the average power of the following sequence:

$$
x(n) = \left(\frac{1}{3}\right)^n u(n-1) + \left(\frac{1}{2}\right)^{n-1} u(n-2)
$$

Problem 2 (*10 pts*)

What is the sequence that results from sampling $x(t) = \cos(50 \pi t)$ at the rate of 150 samples per second? What is the angular frequency and period of the sequence? Can you suggest a different sampling rate of getting the same exact sequence?

Problem 3 (*10 pts*)

A relaxed system is described by the difference equation

$$
y(n) - \frac{1}{2}y(n-1) = x^2(n)
$$

where $x(n)$ denotes the input sequence and $y(n)$ denotes the output sequences. Prove or give counter-examples:

(a) Is the system linear?

(b) Is the system time-invariant?

(c) Is the system causal?

(d) Is the system BIBO stable?

Problem 4 (*10 pts*)

For the system given below:

$$
y(n) = -\frac{1}{4}y(n-1) + x(n-1), \qquad y(-1) = 1, \qquad n \ge 0
$$

(a) Find the impulse response sequences of the system.

(b) Sketch the block diagram representation of the system.

(c) Is the system LTI?

Problem 5 (*10 pts*)

The response of a relaxed LTI system to $x(n) = u(n-2)$ is $y(n) = \left(\frac{1}{2}\right)^n$ $\frac{1}{2}$ $\frac{n-2}{u(n-4)}$. Find its impulse response sequence. Is this a BIBO stable system?

Problem 6 (*10 pts*)

For the following system, determine whether or not the system is causal, linear, timeinvariant, and memoryless:

$$
y(n) = \sum_{k=n-n_o}^{n+n_o} x(k)
$$

Problem 1: $\mathcal{E}_{x} = \sum^{+\infty} |\gamma(n)|^{2}$ = $\frac{1}{2}$ ($\frac{1}{3}$)ⁿ u(n-1) + ($\frac{1}{2}$)ⁿ⁻¹ u(n-2)|² = $\sum_{n=-\infty}^{+\infty} \left[\left(\frac{1}{9} \right)^n u(n-1) + \left(\frac{1}{4} \right)^{n-1} u(n-2) + 2 \left(\frac{1}{3} \right)^n \left(\frac{1}{2} \right)^{n-1} u(n-2) \right]$ $\frac{1}{2}$ = $\sum_{n=1}^{+\infty} (\frac{1}{9})^n + 4 \sum_{n=2}^{+\infty} (\frac{1}{4})^n + 4 \sum_{n=2}^{+\infty} (\frac{1}{6})^n$ $=\frac{\frac{1}{4}}{1-\frac{1}{4}}+4\frac{(\frac{1}{4})^{2}}{1-\frac{1}{4}}+4\frac{(\frac{1}{6})^{2}}{1-\frac{1}{7}}$ 71
= 20.5917 Px = 0 since this sequence is an energy sequence

$$
\int \frac{\pi}{6} \csc \frac{h}{150} \csc \frac{h}{150}
$$
\n
$$
x(n) = \cos (50 \pi \frac{n}{150}) = \cos (\frac{\pi}{3} n)
$$
\n
$$
\int \frac{\pi}{150} \arctan \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150}
$$
\n
$$
\int \frac{2\pi}{\pi (3)} = 6 \quad \text{samples.}
$$
\n
$$
\int \frac{2\pi}{\pi (3)} = 6 \quad \text{samples.}
$$
\n
$$
\int \frac{1}{\pi} \arctan \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150}
$$
\n
$$
\int \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150}
$$
\n
$$
\therefore \quad \int \frac{\pi}{150} \arctan \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150}
$$
\n
$$
\int \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150}
$$
\n
$$
\int \frac{h}{150} \arctan \frac{h}{150} \arctan \frac{h}{150}
$$

3
\n0). No. Counter-example:
$$
x_{\epsilon}(n) = \delta(n)
$$

\n2 $y_{1}(0) = 2 + 4 = y_{2}(0)$
\n \therefore 1_t \Rightarrow not (inear.
\n(b) Yes. Let $y(n) = S[X(n)]$. $y_{2}(n) = S[X(n+1)]$
\n $y(n) = x^{2}(n) + \frac{1}{2}y(n-1)$
\n $= x^{2}(n) + \frac{1}{2}x^{2}(n-1) + \frac{1}{4}y(n-2)$
\n $= \sum_{n=0}^{\infty} (\frac{1}{2})^{m} x^{2}(n-m)$
\n $y_{k}(n) = x^{2}(n-k) + \frac{1}{2}y_{k}(n-1)$
\n $= x^{2}(n-k) + \frac{1}{2}x^{2}(n-k-1) + \frac{1}{4}y_{k}(n-2)$
\n $= \sum_{n=0}^{\infty} (\frac{1}{2})^{m} x^{2}(n-k-m)$
\n $= y(n-k)$
\n \therefore It is over-invariant

(c) Yes,
$$
\therefore
$$
 y(n) = $\sum_{m=0}^{\infty} (\frac{1}{2})^m x^2(n-m)$
By definition, it depends only on $x(k)$ for $k \in n$,
 \therefore It is *course*!

(d) $\forall e$ s. Let $|x(n)| \leq B_x < \infty$ / $\forall n$.

$$
|\gamma(n)| = \left| \sum_{m=0}^{\infty} \left(\frac{1}{2} \right)^m \chi^2(n-m) \right|
$$

$$
\leq \sum_{m=0}^{\infty} \left| \left(\frac{1}{2} \right)^m \chi^2(n-m) \right|
$$

$$
\leq \sum_{m=0}^{\infty} \left(\frac{1}{2} \right)^m B_x
$$

$$
= 2 B_x^2 < \infty
$$

: It is BIBO stable.

Problem 4 (a) We use the zero-state + zero-input method to solve for the impulse response of the system 1) The zero-state part: $y(n) = -\frac{1}{4}y(n-1) + \delta(n-1)$, relaxed The characteristic function is given by $A = -\frac{1}{4}$ The general solution is. $\mathcal{H}(n) = C \lambda^{n} = C (-1)^{n}$ $n \ge 2$ When $n = 0$: $y(0) = -\frac{1}{4} \cdot 0 + 0 = 0$ $n = 1$. $y(1) = -\frac{1}{4} \cdot 0 + 1 = 1$ $n=2$ $y(2)=-\frac{1}{4}\cdot 1+0=-\frac{1}{4}$ = $C\cdot (-\frac{1}{4})^2$ \Rightarrow $c = -4$ Thus, $y_{25}(n) = \begin{cases} 0, & n \le 0 \\ \frac{1}{n} & n = 1 \end{cases}$ $a = (-\frac{1}{4})^{n-1}u(n-1)$ $\left(\left(-\frac{1}{4} \right)^{n-1} \right)$ $n \ge 2$ 2) The zero-input part $y(n) = -\frac{1}{4}y(n-1)$, $y(-1) = 1$ - Using the general solution, we get $y_{h(n)} = C \lambda^{n} = C(-\frac{1}{4})^{n}$, $\forall n$ when $n = -1$: $C(-\frac{1}{4})^{-1} = y(-1) = 1 \implies C = -\frac{1}{4}$

Thus $y_{2i}(n) = (-1)^{n+1}$ $\forall n$ 3) We conclude that, for n20. $y(n) = y_{25}(n) + y_{21}(n)$ $= (-\frac{1}{4})^{n-1}$ $u(n-1) + (-\frac{1}{4})^{n+1} u(n)$ $= -\frac{1}{4} \int ln(1 + 1 + \frac{1}{4})^{n+1} u(n-1)$ Where we set $\{\ast\}$ $(n) = (-\frac{1}{4})^{n+1}$ $u(n)$ for $n \ge 0$ since this is satisfied by $y_{2i}(n) = (-\frac{1}{4})^{n+1}$, $\forall n$ (and we don't (b) $\chi(n)$ \rightarrow Y(n) (C) The system is NOT LTI since the non-gers initial Conditions

$$
S_{S}^{2}[S(n)] = S[u(n) - u(n-1)] = S[u(n)] - S[u(n-1)]
$$

\n
$$
= S[X(n+2)] - S[X(n+1)] = y(n+2) - y(n+1)
$$

\n
$$
= (\frac{1}{2})^{n} u(n-2) - (\frac{1}{2})^{n-1} u(n-3)
$$

\n
$$
= \frac{1}{4}S(n-2) + (\frac{1}{2})^{n} - (\frac{1}{2})^{n-1} u(n-3)
$$

\n
$$
= \frac{1}{4}S(n-2) - (\frac{1}{2})^{n} u(n-3)
$$

$$
\sum_{n=-\infty}^{\infty} \left| \frac{1}{4} \int (n-2) - \left(\frac{1}{2}\right)^n u(n-3) \right|
$$

= $\frac{1}{4} + \frac{1}{n-3} \left(\frac{1}{2}\right)^n$
= $\frac{1}{4} + \frac{1}{1-\frac{1}{2}}$
= $\frac{1}{4} + \frac{1}{4} - \frac{1}{2}$ \approx

Je is BIBO scable.

Problem 6 1) If nous, then the system is described by. $y(n) = \sum_{k=n-n_0}^{n+n_0} \chi(k)$ $= \chi(n-1) + \chi(n) + \chi(n+1) + \cdots$ The system is non-causal, linear, time-invariant, and dynamic. $2)$ if $n_0=0$, then $y(n) = \chi(n)$ The system is causal, linear, time-invariant, and memoryless.