UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE113: DIGITAL SIGNAL PROCESSING

Midterm 1 Exam Date: November 2, 2020, Duration: 1 hour 50 minutes

INSTRUCTIONS:

- The exam has 6 problems
- The exam is open-book and open notes.
- Calculator is allowed.
- Please submit all your work as a single PDF file on CCLE.

Student ID:-

Problem	\mathbf{a}	$\mathbf b$	\mathbf{c}	$\rm d$	Total	Score
$\mathbf 1$	$\overline{5}$	$\overline{5}$	5	5	20	
$\overline{2}$	10	10			20	
3	10				10	
$\overline{4}$	10	10			20	
$\overline{5}$	10	10			20	
6	10				10	
Sum					100	

Table 1: Score Table

Problem 1 (20 pts)

An LTI discrete-time system has an impulse response $h[n] = u[n+1]-u[n-4]$, and as input the signal $x[n] = u[n] - u[n - (N + 1)]$ for a positive integer N. The output of the system is denoted as $y[n]$.

- a) (5 pts) Derive input output relationship in the form of difference equation.
- b) (5 pts) If $N = 4$, without calculating $y[n]$, what is the length of the output $y[n]$? Explain your answer.
- c) (5 pts) Is the system stable?
- d) (5 pts) Is the system causal?

Solution:

a) The output of the system is defined as

$$
y[n] = h[n] * x[n]
$$

$$
y[n] = (\delta[n+1] + \delta[n] + \delta[n-1] + \delta[n-2] + \delta[n-3]) * x[n]
$$

$$
y[n] = x[n+1] + x[n] + x[n-1] + x[n-2] + x[n-3]
$$

b) If two signals $x[n]$ and $h[n]$ are such that $x[n]$ only has non-zero samples in the range $N_{x1} \leq n \leq N_{x2}$ and $h[n]$ has non-zero samples only in the range $N_{h1} \leq n \leq N_{h2}$, then their convolution $y[n] = x[n] * h[n]$ can only have non-zero samples in the range $N_{h1} + N_{x1} \le n \le N_{h2} + N_{x2}.$

$$
N_{h1} = -139; N_{h2} = 3; N_{x1} = 0; N_{x2} = 4
$$

c) The system is stable since

$$
\sum_{n=-\infty}^{\infty} |h[n]| = 5 \le \infty
$$

d) The system is not causal since $h[n]$ is not zero everywhere for $n < 0$.

Problem 2 (20 pts)

A discrete-time system is represented by a difference equation

$$
y[n] = \frac{1}{3} (x[2n+1] + x[n/3] + x[n-1])
$$

- a) (10 pts) The input of the system is generated by sampling an analog signal $x(t) =$ $2\cos(t)$ using two different sampling periods $T_1 = 1/6$ seconds and $T_2 = \pi/6$ seconds. If we want the discrete-time signal $x[n]$ to be periodic, which of the two sampling periods would you use? For the chosen sampling period what would be the fundamental period of $x[n]$?
- b) (10 pts) If $x[n]$ is periodic, would the output of the system also be periodic. What would be the fundamental period?

Solution:

a) The period of the original signal is $\overline{T}=2\pi$. The sampling period T_s needs to be such that $\overline{T_s}$ is a rational number. That will be satisfied if $T_s = T_2$.

We know that N_1 must be an integer and that $N_1 = k \frac{\bar{T}}{L}$ $\frac{T}{T_s}$, and k is the lowest integer factor such that N_1 is an integer.

$$
N_1 = k \frac{\bar{T}}{T_s} = k \frac{2\pi}{\pi/6} = k \frac{12}{1}
$$

We notice that k is 1, and therefore $N_1 = 12$.

b) The period is the LCM of $x[2n+1]$, $x[n/3]$ and $x[n-1]$. The period of $x[2n+1]$ is 6. The period of $x[n/3]$ is 36. The period of $x[n-1]$ is 12. Therefore, the period of $y[n]$ is $LCM(6, 12, 36) = 36$.

Problem 3 (10 pts)

Consider the following block diagram representation of an LTI system. Derive the inputoutput equation.

Solution:

From the figure above

$$
w[n] = x[n] + w[n-1]
$$

Therefore,

$$
x[n] = w[n] - w[n-1]
$$
 (1)

Furthermore,

$$
y[n] = -2w[n] + w[n-1] - w[n-2]
$$
\n(2)

If we can write $y[n]$ as $y[n] = b_0w[n] + b_1w[n-1] + b_2w[n-2]$ and $x[n]$ as $x[n]$ $a_0w[n] + a_1w[n-1]$, then the difference equation of the system can be written as:

$$
a_0y[n] + a_1y[n-1] = b_0x[n] + b_1x[n-1] + b_2x[n-2]
$$

For this system using equations (1) and (2)

$$
a_0 = 1; a_1 = -1
$$

 $b_0 = -2; b_1 = 1; b_2 = -1$

Therefore, the equation of this system is:

$$
y[n] - y[n-1] = -2x[n] + x[n-1] - x[n-2].
$$

Problem 4 (20 pts)

Assume x[n] has nonzero samples only in the interval $-N_1 \le n \le N_2$. Generally, over what interval of time will the following sequences have non-zero samples:

a) (10 pts)
$$
r[n] = x[n] * x[-2n]
$$

b) (10 pts)
$$
y[n] = x[n] * x[n+1]
$$

Solution:

If two signals $x[n]$ and $h[n]$ are such that $x[n]$ only has non-zero samples in the range $N_{x1} \le n \le N_{x2}$ and $h[n]$ has non-zero samples only in the range $N_{h1} \le n \le N_{h2}$, then their convolution $y[n] = x[n] * h[n]$ can only have non-zero samples in the range $N_{h1} + N_{x1} \le n \le$ $N_{h2} + N_{x2}.$

a) $x[-2n]$ will have non-zero samples in the interval $-[N_2/2] \le n \le [N_1/2]$, where $[\cdot]$ is the floor function.

Therefore, $r[n]$ has non-zero samples in the interval $\lfloor N_2/2 \rfloor - N_1 \le n \le \lfloor N_1/2 \rfloor + N_2$.

b) $x[n+1]$ has non-zeros samples in the interval $-N_1 - 1 \le n \le N_2 - 1$. Therefore, $y[n]$ has non-zero samples in the interval $-2N_1 - 1 \le n \le 2N_2 - 1$.

Problem 5 (20 pts)

In this problem, you will use the properties of periodic convolution to calculate the DTFS coefficients of the signal.

a) (10 pts) Find the DTFS coefficients of the periodic signals $x[n]$ and $g[n]$ signals shown below. Only one period is shown for each signal.

b) (10 pts) Let $h[n]$ be a signal defined as $h[n] = x[n] \otimes g[n] \otimes x[n]$. Find the DTFS coefficients of $h[n]$.

Solution: If the DTFS coefficients $x[n]$ and $g[n]$ are \tilde{c}_k and \tilde{d}_k respectively, the DTFS coefficients of $h[n]$ are

$\tilde{h}[n] \stackrel{\text{DTFS}}{\longleftrightarrow} 25 \tilde{c}_k \tilde{d}_k \tilde{c}_k$

Problem 6 (10 pts)

Let $x[n] = 1 + e^{j\omega_0 n}$ and $y[n] = 1 + \frac{1}{2}e^{j4\omega_0 n} + \frac{1}{2}$ $\frac{1}{2}e^{j3\omega_0 n}$ be two signals with a fundamental period N, such that $\omega_0 = 2\pi/N$.

Find the DTFS coefficients of their product $z[n] = x[n]y[n]$, assuming $N = 3$. Solution:

$$
z[n] = 1 + \frac{1}{2}e^{j4\omega_0 n} + \frac{1}{2}e^{j3\omega_0 n} + e^{j\omega_0 n} + \frac{1}{2}e^{j5\omega_0 n} + \frac{1}{2}e^{j4\omega_0 n}
$$

$$
z[n] = 1 + e^{j\omega_0 n} + \frac{1}{2}e^{j3\omega_0 n} + e^{j4\omega_0 n} + \frac{1}{2}e^{j5\omega_0 n}
$$

The period of $z[n]$ is $N = 3$. We can then rewrite $z[n]$ as

$$
z[n] = 1 + e^{j2\pi n/3} + \frac{1}{2}e^{j2\pi 3n/3} + e^{j2\pi 4n/3} + \frac{1}{2}e^{j2\pi 5n/3}
$$

$$
z[n] = 1 + e^{j2\pi n/3} + \frac{1}{2}e^{j2\pi 0n/3} + e^{j2\pi n/3} + \frac{1}{2}e^{j2\pi 2n/3}
$$

$$
z[n] = \frac{3}{2} + 2e^{j2\pi n/3} + \frac{1}{2}e^{j2\pi 2n/3}
$$

The DTFS basis functions for the signal with period $N = 3$ are $e^{j\frac{2\pi}{3}kn}$, for $k = 0, ..., 2$. We can then conclude that :

$$
\tilde{c}_0 = 3/2
$$

$$
\tilde{c}_1 = 2
$$

$$
\tilde{c}_2 = 1/2
$$