UCLA DEPARTMENT OF ELECTRICAL ENGINEERING

EE113: DIGITAL SIGNAL PROCESSING

Midterm 1 Exam Solution Date: October 28, 2019, Duration: 1 hour

INSTRUCTIONS:

- The exam has 3 problems and 6 printed pages.
- The exam is closed-book.
- One double-sided cheat sheets of A4 size is allowed.
- Calculator is allowed.

Student ID:-

Problem	a	\mathbf{b}	\mathbf{C}	d	\mathbf{e}	\vert Total \vert	Score
	3	3	3	3	3	15	
$\overline{2}$	$\overline{5}$	$\overline{5}$	5			15	
3	10					10	
Sum						40	

Table 1: Score Table

Problem 1 (15 pts)

Consider the following system: $y[n] = 0.5x[3n] + 0.5x[2n - 1]$

- (a) (3pts) Is the system linear? Prove your answer.
- (b) (3pts) Is the system time-invariant? Prove your answer.
- (c) (3pts) Is the system causal? Prove your answer.
- (d) (3pts) Is the system BIBO stable? Prove your answer.
- (e) (3pts) Suppose that $x[n]$ is a periodic signal with a fundamental period of $N_x = 110$, what will be the fundamental period of $y[n], N_y$?

Solution:

(a) The system is linear. (1 pt)

$$
Sys\{\alpha_1 x_1[n] + \alpha_2 x_2[n]\} = 0.5\alpha_1 x_1[3n] + 0.5\alpha_2 x_2[3n] + 0.5\alpha_1 x_1[2n-1] + 0.5\alpha_2 x_2[2n-1]
$$

$$
= \alpha_1 \text{Sys}\{x_1[n]\} + \alpha_2 \text{Sys}\{x_2[n]\} \quad (2 \text{ pts})
$$

(b) The system is time-varying. (1 pt)

$$
Sys\{x[n-k]\} = 0.5x[3n-k] + 0.5x[2n-k-1] \text{ (1 pt)}
$$

$$
y[n-k] = 0.5x[3n-3k] + 0.5x[2n-2k-1] \text{ (1 pt)}
$$

(c) The system is not causal. (1 pt)

For example, to obtain $y[n]$ at $n = 1$, we need the values of $x[n]$ at $n > 1$. Therefore, the system is not causal.

$$
y[1] = 0.5x[3] + 0.5x[1] (2 \text{ pts})
$$

(d) The system is BIBO stable. (1 pt)

$$
|x[n]| \le B_x \,\forall n \Rightarrow |y[n]| \le B_x \,\forall n \text{ (2 pts)}
$$

(e) Let $y_1[n] = 0.5x[3n]$ and $y_2[n] = 0.5x[2n - 1]$. The period of $y_2[n]$ is $N_{y_2} = 110.$ (1 pt) The period of $y_2[n]$ is $N_{y_2} = 55.$ (1 pt) N_y is the least common multiple of N_{y_1} and N_{y_2} , therefore $N_y = 110$. (1 pt) Full marks given for only stating the correct answer also.

Problem 2 (15 pts)

Consider the system composed of parallel connection of two LTI systems.

- (a) (5 points) If unit-step response of the equivalent system (the response when the input is a unit-step function) is $y[n] = r[n+1]-r[n-1]$ and $h_1[n] = u[n]-2u[n-1]+u[n-2]$, find and sketch $h_2[n]$.
- (b) (5 points) Find the equivalent impulse response of the system $h_{eq}[n]$. The equivalent response is defined by the following relation: $y[n] = x[n] * h_{eq}[n]$.
- (c) (5 points) Find the response of the system $y[n]$ for $x[n]$ shown in the figure below.

Solution:

(a) The system response to $u[n]$ is

$$
y[n] = u[n] * (h_1[n] + h_2[n]) = u[n] * h_1[n] + u[n] * h_2[n]
$$
 (1 pt)

Furthermore,

$$
u[n] * h_1[n] = u[n] * (u[n] - 2u[n-1] + u[n-2])
$$

= $u[n] * u[n] - 2u[n-1] * u[n] + u[n-2] * u[n]$
= $r[n+1] - 2r[n] + r[n-1]$ (2 pts)

Where we have used the fact that $u[n] * u[n] = r[n+1]$. Now we can find $h_2[n]$,

$$
u[n] * h_2[n] = y[n] - u[n] * h_1[n]
$$

$$
u[n] * h_2[n] = r[n+1] - r[n-1] - r[n+1] + 2r[n] - r[n-1]
$$

$$
u[n] * h_2[n] = 2r[n] - 2r[n-1]
$$

$$
u[n] * h_2[n] = u[n] * 2u[n-1] - u[n] * 2u[n-2]
$$

$$
u[n] * h_2[n] = u[n] * (2u[n-1] - 2u[n-2])
$$
Hence,
$$
h_2[n] = 2u[n-1] - 2u[n-2] = 2\delta[n-1].
$$
 (1 pt)
Sketch (1 pt)

(b) Since this is an addition of the outputs of two parallel systems, $h_{eq} = h_1[n] + h_2[n] =$ $u[n] - 2u[n-1] + u[n-2] + 2u[n-1] - 2u[n-2] = u[n] - u[n-2]$. (Points awarded even if incorrect $h_2[n]$ is used.) 2 points awarded for the equation. 3 points for the correct answer.

(c) The response of the system is shown. Points awarded even if incorrect $h_{eq}[n]$ is used.

Problem 3 (10 pts)

Let $\tilde{x}[n]$ be a periodic signal with period N. Its DTFS representation is given by

$$
\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{c}_k e^{j\frac{2\pi}{N}kn},
$$

where \tilde{c}_k are the DTFS coefficients.

Show that if $\tilde{x}[n]$ is a complex signal and conjugate symmetric $(\tilde{x}^*[n] = \tilde{x}[-n])$, then $\text{Im}\{\tilde{c}_k\} = 0.$

Solution 1:

$$
\tilde{c}_k = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}kn}
$$

We take the conjugate of both sides of the expression above

$$
\tilde{c}_k^* = \sum_{n=0}^{N-1} x^*[n] e^{j\frac{2\pi}{N}kn} (2 \text{ pts})
$$

Using the fact that $\tilde{x}^*[n] = \tilde{x}[-n]$

$$
\tilde{c}_k^* = \sum_{n=0}^{N-1} x[-n] e^{j\frac{2\pi}{N}kn} (2 \text{ pts})
$$

We make the substitution $m = -n$

$$
\tilde{c}_{k}^{*} = \sum_{m=1-N}^{0} x[m] e^{-j\frac{2\pi}{N}km} (2 \text{ pts})
$$

We can freely shift the starting index of the summation above without changing its value and we shift it by $N-1$ to the right

$$
\tilde{c}_k^* = \sum_{m=0}^{N-1} x[m] e^{-j\frac{2\pi}{N}km} (2 \text{ pts})
$$

The expressions for \tilde{c}_k^* and \tilde{c}_k are identical, therefore $c_k^* = c_k$. This implies that $\text{Im}\{\tilde{c}_k\} = 0$. (2 pts)

Solution 2:

$$
\tilde{x}[n] = \sum_{k=0}^{N-1} \tilde{c}_k e^{j\frac{2\pi}{N}kn}
$$

$$
\tilde{x}^*[n] = \sum_{k=0}^{N-1} \tilde{c}_k^* e^{-j\frac{2\pi}{N}kn}
$$

$$
\tilde{x}[-n] = \sum_{k=0}^{N-1} \tilde{c}_k e^{-j\frac{2\pi}{N}kn}
$$

$$
\tilde{x}[-n] - \tilde{x}^*[n] = \sum_{k=0}^{N-1} (\tilde{c}_k - \tilde{c}_k^*) e^{-j\frac{2\pi}{N}kn} = 0 \text{ (4 pts)}
$$

$$
2 \sum_{k=0}^{N-1} \text{Im}\{\tilde{c}_k\} e^{-j\frac{2\pi}{N}kn} = 0 \text{ (3 pts)}
$$

This implies that either Im $\{\tilde{c}_k\}$ is 0 or orthogonal to $e^{-j\frac{2\pi}{N}kn}$. However, since $e^{-j\frac{2\pi}{N}kn}$ is an orthogonal basis, its null space is $\{\emptyset\}$. therefore $\text{Im}\{\tilde{c}_k\} = 0$. (3 pts)