EE113 - Fall 2012 - Quiz 2 - Solution

1. Consider the constant-coefficient difference equation:

$$y(n) - 0.5y(n-1) = u(n), y(-1) = 2, n \ge 0$$

- **A.** Find y(0) and $y(\infty)$ using the initial and final value theorems.
- **B.** Find the step-response of the system by relying only on the unilateral z-transform.

Solution:

 ${\bf A.}$ Take the unilateral z-transform:

$$Y^{+}(z) - 0.5(z^{-1}Y^{+}(z) + y(-1)) = \frac{z}{z - 1}$$

Solving for $Y^+(z)$,

$$Y^+(z) = \frac{2z}{z-1}$$

Therefore, using the initial and final value theorems, we have

$$y(0) = \lim_{z \to \infty} Y^{+}(z) = 2$$
$$y(\infty) = \lim_{z \to 1} (z - 1)Y^{+}(z) = \lim_{z \to 1} 2z = 2$$

 \mathbf{B} . From part (\mathbf{A}) , we have

$$Y^+(z) = \frac{2z}{z-1}$$

which implies that

$$y^+(n) = 2u(n)$$

So y(n) = 2u(n+1).

2. Let $X(\omega)$ denote the DTFT of the signal x(n) shown in Fig. 1. Perform the following without explicitly evaluating $X(\omega)$.

Figure 1: Figure for Problem 2.

- **A.** Evaluate X(0):
- **B.** Evaluate $\theta(\omega)$.
- C. Evaluate $\int_{-\pi}^{\pi} X(\omega) d\omega$

Solution:

A.

$$X(0) = \sum_{n = -\infty}^{\infty} x(n)e^{-j\omega n} \Big|_{\omega = 0}$$
$$= \sum_{n = -\infty}^{\infty} x(n)$$
$$= 6$$

B. Define $x(n) = x_0(n-2)$ where $x_0(n)$ is given by Fig. 2:

Figure 2: Sequence plot of $x_0(n)$.

Since $x_0(n)$ is symmetric over y-axis, the phase $\theta_0(\omega)$ of $X_0(\omega)$ is zero: $\theta_0(\omega)=0$. By shifting property, we have that $X(\omega)=X_0(\omega)e^{-j2\omega}=|X_0(\omega)|e^{j\theta_0(\omega)-j2\omega}$. The phase of $X(\omega)$ is therefore $\theta(\omega)=-2\omega$.

C. $\int_{-\pi}^{\pi} X(\omega) d\omega = 2\pi x(0) = 4\pi$

3. For the system shown in Fig. 3, determine the impulse response if $H(\omega)$ is an ideal lowpass filter, passing frequencies less than $\pi/2$. That is, $H(\omega) = 1$ for $|\omega| \le \pi/2$ and is zero otherwise.

Figure 3: Figure for Problem 3.

Solution: When we input $x(n) = \delta(n)$, we have that w(n) = h(n), which is the impulse response of the low-pass filter. Therefore, the DTFT of w(n) is $H(e^{j\omega})$. Finally, the output $y(n) = w(n) + (-1)^n w(n) = h(n) + (-1)^n h(n)$. The DTFT of y(n) can be found as:

$$Y(e^{j\omega}) = H(e^{j\omega}) + H(e^{j(\omega - \pi)})$$

Since $(-1)^n w(n)$ can be written as $e^{j\pi n} w(n)$ and we used the DTFT property:

$$e^{j\omega_0 n}x(n) \iff X(e^{j(\omega-\omega_0)})$$

Now, we can write $H(e^{j\omega})$ as:

$$H(e^{j\omega}) = \begin{cases} 1, & -\frac{\pi}{2} \le |\omega| \le \frac{\pi}{2} \\ 0, & \text{otherwise} \end{cases}$$

and therefore $H(e^{j(\omega-\pi)})$ can be written as:

$$H(e^{j(\omega-\pi)}) = \begin{cases} 1, & \frac{\pi}{2} \le \omega \le \pi \\ 1, & -\pi \le \omega \le -\frac{\pi}{2} \\ 0, & \text{otherwise} \end{cases}$$

Therefore, $Y(e^{j\omega}) = 1$ for all ω . The inverse DTFT is hence:

$$y(n) = \delta(n)$$