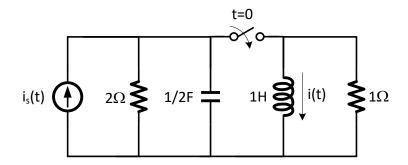
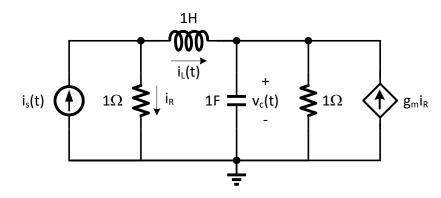
ECE110


Midterm Exam

Name: _____


Total of 2 questions, 120 minutes (including scan/upload).

P1 (40)	
P2 (60)	
Total (100)	

- 1. The circuit shown is in the steady state with switch open. The switch closes at t = 0. $i_s(t) = \delta(t)$.
 - *a*. Find the inductor current i(t) for $t \ge 0$ by directly solving the time-domain differential equation.
 - b. Redo part a using Laplace transform.

- 2. In the linear time-invariant circuit shown below, $g_m = 1$ S, $v_c(0^-) = 1V$, and $i_L(0^-) = -1A$. Assume $i_s(t)$ is bounded, and is enforced at t = 0.
 - a. Using node voltage analysis, write the integro-differential equations of the circuit. You do not need to solve them.
 - b. Indicate the necessary initial conditions for $v_c(t)$ ($v_c(0^-)$ and $\frac{d}{dt}v_c(0^-)$).
 - c. If the circuit is in sinusoidal steady state, with $i_s(t) = (2cost)u(t)$, find the capacitor voltage, $v_c(t)$.

