**Final Exam** 

Name: \_\_\_\_\_\_

| ID: |  |  |  |  |  |  |
|-----|--|--|--|--|--|--|
| _   |  |  |  |  |  |  |

## Total of 3 questions

- Open notes/book, but no internet, ccle, ...
- No calculator, MATLAB, ...
- Unless specifically stated, any method of analysis is acceptable.
- Submit your PDF at or before <u>2:30PM</u> to Gradescope as <Last\_First\_UID>

| P1 (45)            |  |
|--------------------|--|
| P2 (30)            |  |
| P3 (25)            |  |
| <b>Total (100)</b> |  |

- 1. Shown below is a zero-state circuit.  $rr_{mm} = 5\Omega$ .
  - a. (5) Explain physically the number of natural frequencies of the circuit.
  - b. (10) Performing a mesh analysis, set up the integro-differential equations describing the circuit zero-input response (take *ii*<sub>1</sub> and *ii*<sub>2</sub> as the variables).
  - c. (8) Find the circuit natural frequencies.
  - d. (7) Calculate the network function,  $HH(ss) = vv^{VV} \__{21}(ss_{ss})$ .
  - e. (5) Find the location of the circuit poles and zeros.
  - f. (10) Determine the impulse response of the circuit  $(vv_2(tt), \text{ for } vv_1(tt) = \delta\delta(tt))$ .



(1) 
$$v_2(k) = 7$$
 for  $v_1(k) = \delta(k) = 1$   
 $\frac{v_1}{1} = \frac{1}{5}(\frac{5^2+5}{(5+1)}(5+2) = \frac{1}{5+1} + \frac{1}{5+2}$   
 $k_1 = \frac{v_2}{(5+2)}(\frac{5+5}{1}) = \frac{v_3(4)}{1} = \frac{4}{3}$   
 $k_2 = \frac{v_1^2(\frac{5^2+5}{1})}{(5+1)} = \frac{1}{5+2} + \frac{1}{5+2}$   
 $v_2 = \frac{4/3}{5+1} + \frac{-1}{5+2}$   
 $v_2 = \frac{4/3}{5+1} + \frac{-1}{5+2}$ 

- 2. The network shown below has reached steady state for tt < 0. At tt = 0, the switch is flipped from position a to b. For  $vv_{ss}(tt) = ee^{-tt}uu(tt)$ ,
  - a. (20) Find the Norton equivalent of the circuit (in *ss* domain) at the left side of nodes 1-1'
  - b. (10) Calculate the capacitor voltage  $vv_{cc}(tt)$  for tt > 0 using the Norton circuit in part a.





Run - Pall ind sources set to 0  

$$i_{sc} = short output terminals$$

$$i_{sc$$

(2) 
$$\frac{1}{541} - \frac{1}{5c} = \frac{1}{5c-0} + \frac{1}{5c} + \frac{5}{5+1}$$
  
 $1 - (5+1) \text{Isc} = (5+1) \text{Isc} + \frac{1}{5c} + 5$   
 $-4 = (25+3) \text{Isc}$   
 $\frac{1}{2s+3}$ 



3. Shown below, the LTI two-port N with impedance matrix  $ZZ = \frac{\frac{ss+2}{ss+1}}{\frac{1}{ss+1}} \frac{1}{\frac{ss+1}{ss+2}}$  is

terminated with a source and  $1\Omega$  resistors as shown below.

- a. (15) Calculate the voltage transfer ratio,  $VV \__VV^{2}ss((ss^{ss}))$ .
- b. (10) Find the step response of the circuit  $(vv_2(tt) \text{ for } tt > 0 \text{ with } vv_{ss}(tt) = uu(tt))$ .





$$\frac{V_{2}(s) = V_{5} \cdot (1)}{Y_{4}(s+2)} = \frac{V_{4}}{s(s+2)} = \frac{L_{1}}{s} + \frac{L_{2}}{s+2} = \frac{V_{8}}{s} + \frac{-V_{8}}{s+2}$$

$$\frac{L_{1}}{s+2} = \frac{V_{4}}{s+2} = \frac{-1}{4}$$

$$\frac{L_{2}}{s+2} = \frac{V_{4}}{s-2} = \frac{-1}{4}$$

$$\frac{L_{2}}{s-2} = \frac{V_{4}}{s-2} = \frac{-1}{4}$$