ECE 10, Winter 2020, Midterm – February 19, 2020

Instructions: This exam booklet consists of five problems, blank sheets for the solutions, reference sheets with mathematical identities, and additional blank sheets. Please follow these instructions while answering your exam:

- 1. Write your name and student identification number below.
- 2. Write the names of students to your left and right as well.
- 3. You have 1 hour 45 minutes to finish your exam.
- 4. Write your solutions in the provided blank sheets after each problem.
- 5. The sheets marked "Scratch..." will NOT be graded. These sheets are provided for your rough calculations only.
- 6. Write your solutions clearly. Put a box around your final answer. <u>Illegible solutions will</u> <u>not be graded.</u>
- 7. Be brief.
- 8. Open book & open notes only. NO homework solution!
- 9. Regular, scientific, and graphing calculators are allowed.

NAME:	
-------	--

STUDENT ID:

NAMES OF ADJACENT STUDENTS:

LEFT: _____

RIGHT:

Problem	Score
#1	/ ₅
#2	/ ₁₀
#3	/ ₁₀
#4	/ ₁₀
#5	/ ₁₅
Total	/ ₅₀

Problem 1: Consider a capacitor whose capacitance C changes with the potential difference, V, applied across it in the following manner:

$$C = C(V) = C_0 - C_1 V$$

where $C_0 = 20F$ and $C_1 = 2F/V$ respectively. This capacitor was charged from 2V to 4V. Calculate the amount of work done in doing so.

(5 points) Solution : Problem 2: Derive the Norton's equivalent of the circuit shown in Figure 1.

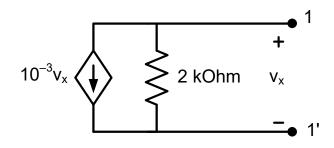


Figure 1

(10 points) Solution: **Problem 3:** Consider the circuit shown in Figure 2.

- **a.** Draw a spanning tree that does **not** include the branches R₃ and R.
- **b.** Use mesh current method to write the equations for this circuit. Make sure that $i_3(t)$ (current through R₃) and $i_R(t)$ (current through R) are two of the unknowns. Assume that no energy is stored in any of the components.

(3 + 7 = 10 points)

Solution:

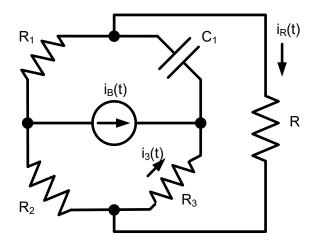


Figure 2.

Problem 4: Assume that the circuit shown in Figure 3 has reached steady state i.e. it has existed in this form for a very long time. Given $R_1 = 1$ kiloOhms, $R_2 = 4$ kiloOhms, L = 1nH, $C_1 = 1$ nF, $C_2 = 1$ nF, and $V_B = 3$ V, calculate the steady state values of $v_{C1}(t)$ and $i_L(t)$.

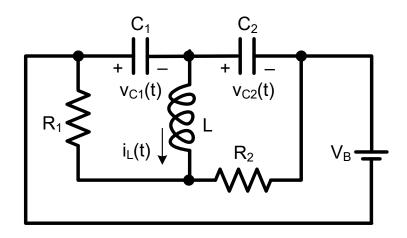


Figure 3.

(5 + 5 = 10 points) Solution: **Problem 5:** Refer to Figure 4 for this problem. The circuit came into existence at t = 0, prior to which, $i_L(0-) = 1A$ and $v_C(0-) = 1V$. Assume that L = 0.25H, $C_1 = 1F$.

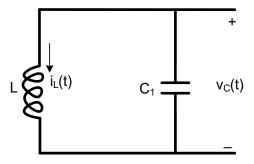


Figure 4.

a. Derive a differential equation in terms of $i_L(t)$ that characterizes circuit behavior for $t \ge 0$.

b. Determine the values of
$$i_L(0^+)$$
 and $\frac{di_L(t)}{dt}\Big|_{t=0^+}$.

c. Determine the value of
$$\frac{d^2 i_L(t)}{dt^2}\Big|_{t=0+}$$

d. Derive an expression for the complete solution of $i_L(t)$ in this circuit.

(2+3+3+7=15 points)

Solution:

Reference Sheet #1

Trigonometric Identities:

$$\sin A = \cos(A - 90^{\circ}) = \cos(A - \pi/2)$$
$$\cos A = \sin(A + 90^{\circ}) = \sin(A + \pi/2)$$
$$\cos(A \pm B) = \cos A \cos B \mp B$$
$$\sin(A \pm B) = \cos A \cos B \pm \sin A \sin B$$
$$\cos A + \cos B = 2\cos((A + B)/2)\cos((A - B)/2)$$
$$\cos A - \cos B = -2\sin((A + B)/2)\sin((A - B)/2)$$
$$\sin A + \sin B = 2\sin((A + B)/2)\sin((A - B)/2)$$
$$\sin A - \sin B = 2\cos((A + B)/2)\sin((A - B)/2)$$
$$\cos 2A = 2\cos^{2} A - 1 = \cos^{2} A - \sin^{2} A = 1 - 2\sin^{2} A$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 3A = 4\cos^{3} A - 3\cos A$$
$$\sin 3A = 3\sin A - 4\sin^{3} A$$
$$a \cos A + b \sin A = \sqrt{a^{2} + b^{2}}\cos(A - \tan^{-1}(b/a))$$

Complex Arithmetic:

$$Re\{z_{1} \pm z_{1}\} = Re\{z_{1}\} \pm Re\{z_{2}\}$$

$$Im\{z_{1} \pm z_{1}\} = Im\{z_{1}\} \pm Im\{z_{2}\}$$

$$Re\{z_{1}z_{2}\} = Re\{z_{1}\} Re\{z_{2}\} - Im\{z_{1}\} Im\{z_{2}\}$$

$$Im\{z_{1}z_{2}\} = Re\{z_{1}\} Im\{z_{2}\} + Im\{z_{1}\} Re\{z_{2}\}$$

$$e^{j\theta} = \cos\theta + j\sin\theta$$

$$x + jy = re^{j\theta} \text{ where } r = \sqrt{x^{2} + y^{2}}, \theta = \tan^{-1}(y/x)$$

$$re^{j\theta} = x + jy \text{ where } x = r\cos\theta, y = r\sin\theta$$

$$|z_{1}z_{2}| = |z_{1}||z_{2}|, angle(z_{1}z_{2}) = angle(z_{1}) + angle(z_{2})$$

$$|1/z| = 1/|z|, angle(1/z) = -angle(z)$$

$$(x + jy)^{*} = x - jy, angle(z^{*}) = -angle(z)$$

Quadratic Equations:

The roots of
$$ax^2 + bx + c = 0$$
 are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Scratch Paper (Will NOT be graded)