EE 10H, Fall 2017, Midterm Exam #1 - May2, 2017

Instructions: This exam booklet consists of problems, blank sheets for the solutions, reference sheets with mathematical identities, and additional blank sheets. Please follow these instructions while answering your exam:

- 1. Write your name and student identification number below.
- 2. Write the names of students to your left and right as well.
- 3. You have 1 hour 45 minutes to finish your exam.
- 4. Write your solutions in the provided blank sheets after each problem.
- 5. The sheets marked "Scratch..." will NOT be graded. These sheets are provided for your rough calculations only.
- 6. Write your solutions clearly. You may box in your final answer. Illegible solutions will NOT be graded.
- 7. Be brief.
- 8. Open textand open notes. NO homework or homework solutions!

	•		
Nan	•		
INAI			
STU			
and the second second			
Nan			
ī			
7			
R			
1			
1			

Problem	Score
#1	25/25
#2	35/40
#3	25/35
Total	85/100

Problem 1: Consider the circuit shown in Figure 1.

- (a) Draw a graph for this circuit.
- (b) Identify (draw) a tree that does not include the branches C2 and R. Choose it such that you have the minimum number of equations to solve.
- (c) Use mesh current method to write the equations for this circuit. Make sure that $i_C(t)$ and $i_R(t)$ are two of the unknowns. Assume that no energy is stored in any of the inductors or capacitors.

$$(5+10+10=25 \text{ points})$$

Figure 1.

Problem 2: Refer to Figure 2 for this problem. Calculate the Norton's equivalent of this network looking into the terminals 1-1'. Use any method of your choice.

Figure 2.

(20 + 20 = 40 points)

 $R_1 = \frac{1}{2} \frac{1}{2$

 $I_{3} = \frac{k I_3 R_3}{R_1 (R_2 + R_3 + \frac{k^2}{R_1}) \times R_2 + R_3}$ $R_{1} = \frac{k I_3 R_3}{R_1 (R_2 + R_3 + \frac{k^2}{R_1})}$ $R_{2} + R_{3} \times R_{3}$

so object w) voltage a to own current e resistor !

