EE10 Midterm 2

Department of Electrical Engineering, UCLA

Winter 2013

Instructor: Prof. Gupta

Duration: 60 mins

- 1. Exam is closed book. Calculator and one double-sided cheat-sheet are allowed.
- 2. Cross out *everything* that you don't want me to see. Points will be deducted for everything wrong!
- 3. Do NOT use Laplace Transforms to solve any problems.
- 4. No points will be given without proper explanations.

Name:

Student ID:

Student on Left:

Student on Right:

Student in Front:

Problem	Maximum Score	Your Score
1	20	
2	10	
3	10	
Total	40	

Question 1 (20 points)

The switch S in the circuit below has been at position A for a long time. At t = 0s S is switched from A to B. Again at t = 1ms S is switched back to A from B. Find values of resistances R₁ and R₂ such that $V_C(1ms) = 5.69V$ and $V_C(2ms) = 2.09V$.

So
$$V_{cit} = 5.69e^{-\frac{(t-1ms)}{T_{2}}}$$

=)
$$5.69e^{-\frac{1mS}{T_1}}$$
 = 2.09

=)
$$T_2 = [mS = (R_2 + loo) \cdot lo^{-6}]$$

(t>(ms)

$$R2 = 9001$$

Question 2 (10 points)

Consider a two terminal network, which have v-i relations as follows

$$N_1$$
: $V_1(t) = 4i_1(t) - 8$

$$N_2$$
: $v_2(t) = 2i_2(t) + 3$

(a) What is the Norton equivalent for N_1 ? (3 points)

Open aircuit:
$$i(t)=0 \Rightarrow Voc = -8V$$

Short aircuit: $V(t)=0 \Rightarrow isc = -i(t)=-2A$

$$RtL = \frac{Voc}{isc} = \frac{-8V}{-2A} = 4A$$

Norton equivalent for N₁

(b) Determine v(t) and i(t) if the two networks are connected as below. (7 points)

$$\frac{V - (-8)}{5} + \frac{V - 3}{3} + \frac{V}{1} = 0$$

$$V(t) = -\frac{9}{23}V$$

$$i(t) = \frac{V - (-8)}{5} = \frac{35}{23} A$$

Question 3 (10 points)

Find the Thevenin equivalent seen between nodes x and y. Assume that the transformers are ideal.

Apply test source
$$V_{T}$$
 I_{T}
 I

Therefore
$$Z_{XY} = \frac{V_I}{I_T} = 10 \, \text{A}$$

$$V_{XY} = 0 \, \text{V} \quad \text{Since no}$$
independent source

