EE10 Midterm 2

February 29, 2012

Winter 2012

Department of Electrical Engineering, UCLA

Instructor: Prof. Puneet Gupta

DURATION: 1 hour 30 minutes

- 1. The exam is closed book. You are allowed one 8.5" X 11" double-sided cheat sheet.
- 2. Calculators are allowed.
- 3. Cross out everything that you don't want evaluated. Points will be deducted for everything wrong!
- 4. Do NOT use Laplace Transforms to solve any problems.

N	•	A	Æ	\mathbf{r}	
1	Δ	.Ι₹	1	1	٠

STUDENT ID:

STUDENT ON LEFT:

STUDENT ON RIGHT:

STUDENT IN FRONT:

PROBLEM	MAXIMUM SCORE	YOUR SCORE
1	6	
2	12	
3	6	
4	6	
TOTAL	30	

Question 1

Consider the circuit shown in Figure 1(a). The current i(t), flowing through the inductor was found to obey the straight-line plot shown in Figure 1(b) for 0 < t < 4ms. Find an expression for v(t) for 0 < t < 4ms which satisfies the observation and draw a neat plot for it.

FIGURE 1(a)

FIGURE 1(b)

$$V(t) - 1.i(t) - 400 \, \text{mH} \, \frac{di(t)}{dt} = 0$$

$$\Rightarrow V(t) = i(t) + 0.4. \frac{di(t)}{dt} ---(1)$$

$$V(t) = \left(\frac{1}{4}t + 0.4 \times \frac{1}{4}\right) \vee$$

$$\Rightarrow V(t) = \left(\frac{1}{4} t + 0.1 \right) . V$$

$$t \text{ in } S$$

Question 2 12 points

In the circuit shown in Figure 2, the switch is open for a long time and the circuit is in steady state. At time t = 0s, the switch is closed and remains closed till t = 1.5ms, when it is opened again. Find the voltage v(t) across the capacitor C for $t \ge 0s$ and draw a neat plot for it.

FIGURE 2

For
$$0 \le t \le 1.5 \text{ ms}$$

$$10v = 0.05 \text{ FT}$$

$$10v = 0.05 \text{ FT}$$

$$10v = 0.05 \text{ FT}$$

$$V(0^{-}) = 10V = V(0^{+})$$

$$V(\omega) = \frac{5}{4}A.452 = 5V, \ \tau_1 = 4 \times 0.05 s$$

$$\frac{10V}{8\Omega} = \frac{5}{4}A$$
 $\frac{5}{4}$ $\frac{10}{8}$ $\frac{5}{4}$ $\frac{10}{8}$ $\frac{5}{4}$ $\frac{10}{8}$ $\frac{5}{4}$ $\frac{10}{8}$ $\frac{10}{4}$ $\frac{10}{8}$ $\frac{10}{4}$ $\frac{10}{8}$ $\frac{10}{4}$ $\frac{10}{8}$ $\frac{10}{4}$ $\frac{10}{8}$ $\frac{10}{4}$ $\frac{10}{8}$ $\frac{10}{4}$ $\frac{10}{8}$ $\frac{10}{8}$

$$V(1.5 \text{ ms}) = 5(1+e^{-1.5 \times 10^{-3}/6.2}) \text{ volts} = 9.96 \text{ volts}$$

$$\frac{V(1.5ms^{2})}{8.2} = 9.96 \text{ V} = V(1.5ms^{2})$$

$$\frac{V(1.5ms^{2})}{V(\infty)} = 10 \text{ V}$$

$$\frac{V(\infty)}{V(\infty)} = 10 \text{ V}$$

$$\frac{V(1.5ms^{2})}{V(\infty)} = 0.45$$

$$V(t) = 10 - (10 - 9.96) e^{\frac{-(t - 1.5m)}{0.45}} V$$

$$\Rightarrow V(t) = (10 - 0.04 e^{-(t - 1.5m)}) V + > 1.5ms$$

Hence,
$$V(t) = \begin{cases} 5(1+e^{-t/0.2s}) \text{ volts}, 0 \le t \le 1.5 \text{ ms} \\ (10-0.04e^{(t-1.5m)/0.4s}) \text{ volts}, t > 1.5 \text{ ms} \end{cases}$$

Q2: Alternate Solution (using differential eq?)

For 0 < t < 1.5 ms

$$|0V| = \frac{10V}{8\Omega} + \frac{10V}{8} + \frac{10V}{8$$

$$\Rightarrow V(t) = e^{-5t} \int (25e^{5t}) + ke^{-5t} = 5 + ke^{-5t}, 0 \le t \le 1.5$$

Initial Condition: $V(0-) = 10V = V(0+)$
 $K = 5$

For + > 1.5ms

$$|0V| = \frac{8\Omega}{V} + \frac{10}{V} + \frac{$$

$$V(t) = \begin{cases} 5 \left(1 + e^{-5t}\right) \text{ volls } 0 \le t \le 1.5 \text{ ms} \\ 10 - 0.04 e^{-\frac{5}{2}(t - 1.5 \text{m})} \text{ volls } t > 1.5 \text{ ms} \end{cases}$$

V(t) & its plot are same as in previous solution.

Question 3

6 points

The circuit shown alongside (Figure 3) is at rest for a long time with the switch S closed. At t = 0, the switch is opened and the values of the currents i_1 and i_2 (as marked in the figure) are measured just after opening the switch (i.e. at t = 0+) and after a very long time after opening the switch (i.e. at $t = \infty$).

- (a) Find $i_1(0+)$ and $i_2(0+)$.
- (b) Find $i_1(\infty)$ and $i_2(\infty)$.

FIGURE 3

$$^{\circ}_{1}(0^{-}) = \frac{20 \text{ V}}{15 \Omega} = \frac{4}{3} \text{ A}$$

$$\hat{l}_2(0^-) = OA$$

 $\hat{l}_{2}(0+) = \hat{l}_{2}(0-) = 0 A$ because inductor current cannot change instantaneously.

$$\Rightarrow \hat{l}_{1}(\omega) = 0 A$$

$$\hat{l}_{2}(\omega) = 0 A$$

Question 4

Two resistors ($R_1 = 2\Omega$ and $R_2 = 6\Omega$) and an ideal transformer (turns-ratio 2:1) form a network shown in Figure 4. Find the equivalent resistance R_{eq} seen between the two terminals x and y of this network.

$$i_1 = i - \frac{V}{4}$$
 (kcl at A)
 $i_2 = \frac{V}{4} - \frac{V}{12} = \frac{V}{6}$ (kcl at B)

Transformer current eq. " :

$$\Rightarrow \left(\frac{3}{4} - \frac{V}{4}\right)^2 + \frac{V}{6} = 0$$