Total of four questions (25 points each), three hours.

Box your answers.

Leave margin on your answer sheet for staple.

- 1. The circuit below has been idle (switch open) for a long time. At t = 0 the switch is closed.
 - a) Give mathematical expression of $v_o(t)$
 - b) Plot $v_o(t)$

- 2. The circuit below is at zero state for t < 0, and the diode is ideal. The switch closes at t = 0, and opens at t = 2.
 - a) Calculate and plot $i_L(t)$ as marked on the circuit
 - b) Calculate and plot $v_C(t)$ as marked on the circuit

Ldi-Ve Cdy: is. Lati - Te.

 $\frac{5}{2}$ 10 $\frac{5}{2}$ 5. 17.5

 $LC \frac{di}{dt^2} = iC$

- 3. In the following second-order circuit, R is resistance and C is capacitance.
 - a) Calculate and plot the impulse response (v_o is the output);
 - b) Intuitively, find the values of $v_o(0^+)$ and $\frac{dv_o}{dt}(0^+)$.

- 4. The following circuit is in sinusoidal steady state, and $v_s(t) = 2 \cos 2t$.
 - a) Find the Thevenin equivalent on the left side of nodes a-b;
 - b) Determine the optimum values for M and C_2 to deliver the maximum average power to the load Z_L ;
 - c) Calculate this maximum average power delivered to the load.

CdVc-Iz

Vc=