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Midterm Solutions

Problem 1. (10 points). For what values of the scalar a are the following matrices positive

definite?
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I is the n x n identity matrix and v = (1,1,...,1), the n-vector with all its elements equal
to one.

Solution. A matrix is positive definite if and only if it has a Cholesky factorization. The
first matrix has a Cholesky factorization

A:[ajf ﬁf“é \/%I]

if and only if |a| < 1. The second matrix has a Cholesky factorization

A I 0 I au
Claut V1—a?n || 0 V1—a?n
if and only if |a| < 1/y/n. The third matrix has a Cholesky factorization
1 0 0 1 1 1
A=11 Va-1 0 0 va—1 Va-—1
1 Va—1 V2—a 0 0 V2—a

if and only if 1 < a < 2.



Problem 2 (10 points). Consider the linear equation
(A4 eB)x =b,

where A and B are given n X n-matrices, b is a given n-vector, and € is a scalar parameter.
We assume that A is nonsingular, and therefore A+ €B is nonsingular for sufficiently small e.
The solution of the equation is

(€)= (A+eB)7'b,

a complicated nonlinear function of e. In order to find a simple approximation of z(e), valid
for small €, we can expand x(¢) = (A + eB)~'b in a series

z(€) = xo + €xy + 19 + ET3+ -+,

where g, 1, 2, x3, ...are n-vectors, and then truncate the series after a few terms. To
determine the coefficients x; in the series, we examine the equation

(A+eB)(zo + exy + w9 + Exs +--) = b.
Expanding the product on the lefthand side gives
Azo + e(Azy + Bxg) + 2(Axy + Bxy) + ¢ (Axs + Bxg) + --- = b.
We see that if this holds for all € in a neighborhood of zero, the coefficients z; must satisfy
Axg =D, Az + Bxg =0, Axo + Bx; =0, Axs+ Bxy =0, o (D

Describe an efficient method for computing the first k+1 coefficients z, ..., xj from (1).
What is the complexity of your method (number of flops for large n, assuming k& < n)? If
you know several methods, give the most efficient one.

Solution. We need to solve k 4 1 equations
Axg = b, Axr1 = —Buxg, Axry = —Buxq, e Az, = —Bxj_q.

This requires one LU factorization of A, k matrix-vector products Bx;, and k + 1 forward
and backward substitutions. The total cost is

(2/3)n® + 2kn? + 2(k + 1)n? ~ (2/3)n?.



Problem 3 (10 points). We define A as the n x n lower triangular matrix with diagonal
elements 1, and elements —1 below the diagonal:

1 0 0 -+ 00
-1 1 0 -+ 00
-1 -1 1 - 00

A= S o
~1 -1 -1 - 1
-1 -1 -1 -+ —1 1|

1. What is A~'?
2. Show that r(A) > 2"2. This means that the matrix is ill-conditioned for large n.

3. Show with an example that small errors in the righthand side of Ax = b can produce

very large errors in z. Take b = (0,0,...,0,1) (the n-vector with all its elements zero,
except the last element, which is one), and find a nonzero Ab for which
|Az]] 2n_zHAbH’
] 161l

where z is the solution of Az = b and z + Az is the solution of A(x + Ax) = b+ Ab.

Solution.

1. We find A~! by solving AX = I, column by column. This gives

10 0 0 0 0]
1 1 0 0 0 0

2 1 1 0 0 0

Al 4 2 1 1 0 0
8 4 2 1 1 0

| 2n2 gn3 gned gneh gne6 |

The diagonal elements are one; we have (A™1);; =271 for i > j.

2. We bound the norm of A and A~! using the inequalities

-1
jarz B2l a2 100
|| [y
which hold for all nonzero x and y. If we take z = (0,...,0,1) and y = (1,0,...,0)
we get
JA] > |[Az|| =1, [[ATH > A7yl > 272
Therefore

K(A) = lAIIIATH| > 2",



3. The solution of Az = bis =z = (0,0,...,1). If we take Ab = (1,0,...,0), then
Ar = (1,1,2,4,8,...,2"2). Therefore

18] s 0] _
[l =7 Tl



Problem 4 (10 points). Describe an efficient method for each of the following two prob-
lems, and give a complexity estimate (number of flops for large n).

1. Solve
DX +XD=B

where D is n x n and diagonal. The diagonal elements of D satisty d;; +d;; # 0 for all
¢ and j. The matrices D and B are given. The variable is the n X n-matrix X.

2. Solve
LX+XL"=B

where L is lower triangular. The diagonal elements of L satisfy l;; + [;; # 0 for all 4
and j. The matrices L and B are given. The variable is the n x n-matrix X. (Hint:
Solve for X column by column.)

If you know several methods, choose the fastest one (least number of flops for large n).

Solution.

1. The i, j-element of DX + X D is (d;; +d;;)X;;. It is given that d;; +d;; # 0, so we can
solve for X element by element:

The cost is 2n? flops.

2. Denote the columns of X by X, Xs, ..., X,,, and the columns of B by By, Bs, ...,
B,,. If we write the equation in terms of the columns of X and B we get

LX,+1n Xy = B
LXy 4 191X + 122Xy = DBy
LX5+ 131 X1 +132X0 + 133X3 = DBy

In other words,

(L+1n)X, = B
(L —|— le[)XQ — BQ - l21X1
(L+1331)X3 = By —131X3—I3X>

(L + lnnI)Xn - Bn - lanl - ln2X2 - ln,n—an—l-



We can solve for X; first, then evaluate the righthand side of the second equation and
solve for X5, then plug in X; and X, in the third righthand side and solve for Xy, et
cetera. The matrices on the left are upper triangular with nonzero diagonal elements
(since we are given that l; 4+ [;; # 0 for all 7 and j), so each equation can be solved by
forward substitution.

To estimate the cost we look at the equation for the kth column:
(L4 leel) Xy = B — la X1 — Lo Xo — -+ — g1 Xg—1.

The vector on the right can be computed in 2(k — 1)n operations. Adding lx; to the
diagonal elements of U takes n flops. Solving the equation costs n?. The cost of step
k is therefore n? + (2k — 1)n. The total cost is

n*+nd (2k—1) = n*+n(l+3+5+--+(2n—1))
k=1
= 23



