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EE103
Midterm Solutions
Problem 1 (20 points). Let A be an m x n matrix with ||A|| < 1.
1. Show that the matrix I — A7 4 is positive definite.

2. Show that the matrix

is positive definite.

Solution.
1. If  is nonzero, then
o7 (1 — A" Az = oz — 2TAT Az = ||z)|? - || Az|* > 0
because ||Az||/||z]| < |[A] < 1 for all nonzero z.

2. This can be proved two ways. Applying the definition of positive definite matrix, we
get

i = Al s

(2 + Ay)" (2 + Ay) + "y — yT A" Ay
lz — Ay||* + 4" (1 — AT Ay

and this is positive for nonzero (z,y): if y # 0, then the second term is positive because
I — AT A is postive definite; if y = 0 and =z = 0, the first term is positive.

We can also note that the matrix can be factored as

o 1]=Le ][0 2]

where I — ATA = LLT is the Cholesky factorization of I — ATA (a positive definite
matrix, by the result of part 1).



Problem 2 (20 points). Let A be a nonsingular n x n matrix and b an n-vector. In each
subproblem, describe an efficient method for computing the vector 2 and give a flop count of
vour algorithm, including terms of order two (n?) and higher. If you know several methods,
give the most efficient one (least number of flops for large n).

1Lx=(A1+A b
2 = (A1 5 AT,

3. = (A1 4+ JA"1J)b where J is the n x n matrix

00 B
Ohill e
J= s
0 1 - 0.0
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(.J is the identity matrix with its columns reversed: J;; = 1if¢+j=n+1and J;; =0
otherwise.)

Solution.

1. Wewritezasz=Ab+ A4 =y + A 'y where y = A~ 1b.

o LU factorization of A ((2/3)n® flops)

e Solve PLUy =1
— Solve P§ = b (zero flops). :
— Solve Ljj = } by forward substitution (n? flops).
— Solve Uy = 7 by backward substitution (n? flops).

e Solve PLUz =y

— Solve Pz = y (zero flops).
— Solve Lz = 2 by forward substitution (n? flops).
— Solve Uz = # by backward substitution (n? flops).

e x=y+ 2 (n flops).

Total: (2/3)n® + 4n2.
2. We write 7 as z = A~ b+ A~ Tb.

o LU factorization of A ((2/3)n? flops)

e Solve PLUy =b
— Solve Py = b (zero flops).



(V5]

— Solve Lj = § by forward substitution (n? flops).
— Solve Uy = § by backward substitution (n? fops).
e Solve (PLUY Tz =UTLTPTz =}
— Solve U2 = b by forward substitution (n? flops).
— Solve LTZ = Z by backward substitution (n? flops).
— Solve PTz = Z (zero flops).
* 2 =y+z (n flops).

Total: (2/3)n® + 4n?.

- We write 7 as 2 = A 104+ JA~'Jb and note that .J is a permutation matrix with

=t

o LU factorization of A ((2/3)n® flops)
e Solve PLUy = b
— Solve P§ = b (zero flops).
— Solve Lj = § by forward substitution (rn? flops).
— Solve Uy = § by backward substitution (n? flops).
e Solve JPLUJz = b.
— Solve Ju = b (zero flops, because J is a permutation matrix).
— Solve P2 = v (zero flops).
— Solve Lz = £ by forward substitution (n? flops).
— Solve Uz = £ by backward substitution (n? flops).
— Solve Jz = z (zero flops, because J is a permutation matrix).
e = =y+2z (n flops).

Total: (2/3)n* + 4n2.



Problem 3. (20 points). A direcied iree is a connected graph with n + | nodes and n
directed arcs. The figure shows an example with n = 6 (7 nodes and 6 arcs).

A directed tree can be represented by a reduced node-are incidence matriz defined as follows.
We label one node as the rogt node. The other nodes are labeled with integers from 1 to n.
The arcs are also given integer labels from 1 to n. The node-arc incidence matrix A is then
defined as the n x n matrix with coefficients

+1 if arc j ends at node ¢
A; =4 =1 if arc j begins at node z
0 otherwise

forg =A... nand =1 _....m.

1. Suppose we use the node labeled R as the root node in the example. Number the
non-root nodes and the arcs in such a way that the node-incidence matrix is lower
triangular.

2. Show that the node-incidence matrix obtained in part 1 is nonsingular.

3. Show that the coefficients of the inverse of the node-incidence matrix in part 1 have
values 0, +1 or —1.

4. Do properties 2 and 3 hold for any numbering of the nodes and arcs, or only if the
incidence matrix is lower triangular?



Solution.

1. An example is shown below, but there are many other correct. answers. In general, A
will be lower triangular if

e the nodes are numbered so that each node has a lower number than its ‘parent’
{the next node on the path leading to the root node),

e an arc connecling two non-rect nodes is given the lowest of the the labels of the
two nodes,

e an arc connecting a non-root node to the root node is given the label of the
non-root node.

A
)
b
The node-arc incidence matrix for the numbering in the example is

1 0 0 0 0 0
Dl ()
0 0 -1 00 0
d=l 6 1 0 1%
—1 10 i =l 0
D0 H 01
2. The inverse is
0 B 050 D"
1) ESE] SR (N ()55 (VD)
e CIERR 0, = 1T R (AR
I
i 0 -1 0 -10 0
1 1 0 1] 0
b6 01 06 0 —1|
We can find the inverse by solving AX = /7, column by column, using forward substi-

tution.

A faster method 1s based con the following interpretation. Suppose z is an n-vector,
and we interpret a; as the flow through arc & (positive if it follows the orientation of

iy

J




the arc and negative otherwise). Then (Ax); is the total flow arriving at node i. We
find th sth colunn of the inverse by solving the equation Az = e;, where e; is the ith
column of /. This equation can be interpreted as follows: we nject a flow of 1 into
the root node and extract it from the network at node 7. The total flow arriving at
each of the other nodes is zero. From the graph it is easy to determine the flow vector
z, i.e., the ith colum of A=, For example, for ¢ = 1, it is clear that the solution is
(1,0,0,0,1,0) becaue a wnit flow injected at the root node and extracted at node 1 will
pass through arcs 5 and 1. Similarly, for i = 2, we get 2 = (0,1,0,—1,1, 0), et cetera.

. The properties are independent of the numbering. Choosing another nmunbering is
equivalent. to pre- and post-multiplying A with permutation matrices, i.e., the new
node-incidence matrix is P A5, The inverse matrix exists and is given by (P APy) -1
s0 it also has elements 0, —1 and 1.



Problem 4 (20 points).

condition number

(=]

The graph shows the condition number of one of the following matrices as a function of ¢ for
= (.

TN & ot t i) it —t
Al—{l —t]’ Az‘[—-f, 1} ‘/13_{{] 1+t}’ A‘i_[—t 1]'

Which of the four matrices was used in the figure? Carefully explain vour answer.

Solution. We note that the condition number goes to infinity near ¢ = 0, and is not defined
at t = 0, meaning that the matrix is singular at ¢ = 0. Another interesting point is ¢ = 1,
because the condition number there is equal to 1.

1. This matrix is not singular at ¢ = 0. In fact x(A;) = 1 for t = 0 because it is a
permutation matrix.

2. This matrix is singular at ¢ = 0. The norm at ¢ = 1 is

||AQ|| = I}Ellds\l((“ + \1;,2)2 + (—x1 + 3{.2)2)1/2
= ax (20} + 20

= /2.

11 -1
2 !
A2 _2[1 1]

By the same argument as for A, we have || A5'|| = 1/\/5‘ Therefore k(Ay) = ||A2|[||Aé1|| —

V2/V/2=1.

The inverse is



3. This matrix is singular for £ = 0. At/ = | its condition number is 2 because ||A|| = 2
and ||A]7Y| = 1.

4. This matrix is singular for ¢ = 0. It is also singular at £ = 1 because the two columns
are dependent.

Therefore the only possible choice is As.



