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Midterm solutions

Problem 1 (10 points). A square matrix A is called normal if AAT = ATA. Show that
if A is normal and nonsingular, then the matrix Q = A−1AT is orthogonal.

Solution. We show that QTQ = I:

QTQ = (A−1AT )T (A−1AT )

= AA−TA−1AT

= A(AAT )−1AT

= A(ATA)−1AT

= AA−1A−TAT

= I.

On line 2 we use (BC)T = CTBT . On lines 3 and 5 we use the property that (BC)−1 =
C−1B−1 if B and C are invertible. On line 4 we use the definition of normal matrix.

Problem 2 (10 points). Let a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3), d = (d1, d2, d3)
be four given points in R3.

The points do not lie in one plane. Algebraically, this can be expressed by saying that
the vectors b−a, c−a, d−a are linearly independent, i.e., y1(b−a)+y2(c−a)+y3(d−a) = 0
only if y1 = y2 = y3 = 0.

Suppose we are given the distances of a point x = (x1, x2, x3) to the four points:

‖x− a‖ = ra, ‖x− b‖ = rb, ‖x− c‖ = rc, ‖x− d‖ = rd.

Write a set of linear equations Ax = f , with A nonsingular, from which the coordinates x1,
x2, x3 can be computed. Explain why the matrix A is nonsingular.

Solution. Squaring the norms gives four nonlinear equations

‖x‖2 − 2aTx+ ‖a‖2 = r2
a

‖x‖2 − 2bTx+ ‖b‖2 = r2
b

‖x‖2 − 2cTx+ ‖c‖2 = r2
c

‖x‖2 − 2dTx+ ‖d‖2 = r2
d
.

Subtracting the first equation from the three others gives

2(a− b)Tx = r2
b
− r2

a
+ ‖a‖2 − ‖b‖2

2(a− c)Tx = r2
c
− r2

a
+ ‖a‖2 − ‖c‖2

2(a− d)Tx = r2
d
− r2

a
+ ‖a‖2 − ‖d‖2.



In matrix form,







a1 − b1 a2 − b2 a3 − b3
a1 − c1 a2 − c2 a3 − c3
a1 − d1 a2 − d2 a3 − d3













x1

x2

x3






=

1

2







r2
b
− r2

a
+ ‖a‖2 − ‖b‖2

r2
c
− r2

a
+ ‖a‖2 − ‖c‖2

r2
d
− r2

a
+ ‖a‖2 − ‖d‖2






.

The matrix is nonsingular because its rows are linearly independent. (Equivalently, AT has
a zero nullspace, so it is nonsingular and therefore A is nonsingular.)

Problem 3 (15 points). Let A be a nonsingular n×n-matrix and let u, v be two n-vectors
that satisfy vTA−1u 6= 1.

1. Show that
[

A u
vT 1

]

−1

=

[

A−1 0
0 0

]

+
1

1− vTA−1u

[

A−1u
−1

]

[

vTA−1 −1
]

.

2. Describe an efficient method for solving the two equations

Ax = b,

[

A u
vT 1

] [

y
z

]

=

[

b
c

]

.

The variables are the n-vectors x and y, and the scalar z.

Describe in detail the different steps in your algorihm and give a flop count of each
step. If you know several methods, choose the most efficient one (least number of flops
for large n).

Solution.

1. We show that the product of the two matrices is the identity:
[

A u
vT 1

]([

A−1 0
0 0

]

+
1

1− vTA−1u

[

A−1u
−1

]

[

vTA−1 −1
]

)

=

[

I 0
vTA−1 0

]

+
1

1− vTA−1u

[

0
−1 + vTA−1u

]

[

vTA−1 −1
]

=

[

I 0
vTA−1 0

]

+

[

0
−1

]

[

vTA−1 −1
]

=

[

I 0
vTA−1 0

]

+

[

0 0
−vTA−1 1

]

=

[

I 0
0 1

]

.
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2. We are asked to compute x = A−1b and
[

y
z

]

=

[

A u
vT 1

]

−1
[

b
c

]

=

([

A−1 0
0 0

]

+
1

1− vTA−1u

[

A−1u
−1

]

[

vTA−1 −1
]

) [

b
c

]

=

[

A−1b
0

]

+
vTA−1b− c

1− vTA−1u

[

A−1u
−1

]

=

[

x
0

]

+
vTx− c

1− vTA−1u

[

A−1u
−1

]

=

[

x
0

]

+
vTx− c

1− vTw

[

w
−1

]

if we define w = A−1u. We can compute x, y, z as follows.

• LU factorization A = PLU ((2/3)n3 flops).

• Solve PLUx = b by forward and backward substitution (2n2 flops).

– Solve Px1 = b by applying a permutation to b: x1 = P T b (0 flops).

– Solve Lx2 = x1 by forward substitution (n2 flops).

– Solve Ux = x2 by back substitution (n2 flops).

• Solve PLUw = u in the same way (2n2 flops).

• Compute z = (vTx− c)/(vTw − 1) (4n+ 1 flops).

• Compute y = x− zw (2n flops).

The total (for large n) is (2/3)n3 flops.

Problem 4 (15 points). Let A be a positive definite 5×5-matrix with the nonzero pattern

A =

















• • •
• •

• • •
• • •

• •

















.

The dots indicate the positions of the nonzero elements; all the other elements are zero.
The Cholesky factor L of A has one of the following lower-triangular nonzero patterns.

Which one is correct? For each L, explain why L is or is not the Cholesky factor of A.

(a) L =

















•
•

• •
• •

• • •

















(b) L =

















•
•

• • •
• • •

• •
















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(c) L =

















•
•

• •
• • • •

• • •

















(d) L =

















•
•

• •
• • • •

• • •

















Solution. Recall the general algorithm for a Cholesky factorization

[

a11 AT

21

A21 A22

]

=

[

l11 0
L21 L22

] [

l11 LT

21

0 LT

22

]

.

• Determine the first column: l11 =
√
a11, L21 = (1/l11)A21.

• Factor A22 − L21L
T

21
= L22L

T

22
.

From the first step we see that the first column of L must have the same nonzero pattern
as the first column of A. This already rules out the matrix (a) because of the nonzero in
position 4, 1 of L.

After the first step of the factorization, the matrix A22−L21L
T

21
has the following pattern:

A22 − L21L
T

21
=











• •
• •

• •
• •











−











•
•





















•
•











T

=











• •
• • •

• • •
• •











The first column of the Cholesky factor L22 of this matrix must have zeros in positions 2
and 4. In other words, elements 3 and 5 of the second column of L must be zero. This rules
out the matrices (b) and (c).

Continuing the same reasoning, we see that in step 3 we factor a matrix with nonzero
pattern







• • •
• •
• •





−






•












•







T

=







• • •
• •
• •





 ,

and in the step 4 a matrix

[

•
•

]

−
[

•
•

] [

•
•

]T

=

[

• •
• •

]

.

We see that all the elements below the diagonal in the third and fourth columns of L are
nonzero. This is consistent with the pattern (d).
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