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13’, where we corrected a typo and added two formulas.
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Important formulas and definitions

Lecture 2. Accuracy of numerical algorithms

e Floating-point numbers with base 2
:!:(.fflﬂ’.g s .ff“)g » Jh== j:(dlg_l “+ dgz_? = LRI ﬁ!“z_") o 5

with dy = 1, d; € {0, 1}
e Machine precision: €y = 27"

e IEEE double precision arithmetic: —1021 < e < 1024, n = 53, epy &~ 1.11- 10716

Lecture 3. Vectors and matrices

e Geometric interpretation of inner product: ;r:Ty = ||lz||||y]| cos £(z. y)

e Number of flops for basic matrix and vector operations:

~ inner product z’y where z,y € R": 2n flops
— vector addition = + y, scalar multiplication ax where z,y € R", o € R: n flops
— matrix-vector multiplication Az where A € R™*": 2mn flops

matrix-matrix multiplication AB where A € R™*?, B € R"*": 2mnp flops

Lecture 5. The solution of a set of linear equations

Ax
e Definition of matrix norm: ||A|| = max | Az] = max || Ax||
x#0 ||z lz]|=1

e Properties of the matrix norm:

oAl = |al||A]l for a € R

|A|| > 0 for all A; ||Al| =0iff A=0

|4+ B < Al + B

|Az|| < [|A]|||z]] for all z € R"

|AB| < |IA]|1B]

1/|A~ Y = min,.o(||Az||/||z||) if A is square and nonsingular
|A|[||A~]] = 1if A is square and nonsingular

e Definition of condition number: x(A) = || Al||| A" ||
e Error bounds for Az = b, A(x + Azx) = b+ Ab:
s |Az| 1AD]
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Lecture 6. Solving sets of linear equations

e cost of solving Az = b when A € R"™" is upper or lower triangular: n* flops
e LU factorization with partial pivoting: A = PLU (P a permutation matrix, L unit
lower triangular, U upper triangular). Cost: 2n°/3 flops if A € R™™"
Lecture 7. Positive definite sets of linear equations
e Cholesky factorization: A = LLT (L lower triangular with positive diagonal elements).

Cost: ﬂ,s/?) HUIJS if A &€ R**"

Lecture 9. The solution of a least-squares problem

e Solution that minimizes ||Ax — b|| if A € R™ " has rank n: @ = (ATA)"1ATp

Lecture 10. Solving least-squares problems
o (QR-factorization: A = QR () orthogonal, R upper triangular with positive diagonal
elements). Cost: 2mn? flops if A € R™*"
Lecture 11. Underdetermined sets of linear equations

e Least-norm solution of Az = b if A € R™" has rank m: x = AT(AA")~1b

Lecture 12. Nonlinear equations
e Newton iteration for solving a set of nonlinear equations f(z) = 0 where f: R" — R":
at =x — Df(x)"' f(z), where Df(z) € R™" with (D f(x));; = 0fi(z)/0z;.
Lecture 13. Unconstrained minimization

e Newton iteration for minimizing a function g : R" — R: 2t = z — V?¢g(z) 'Vyg(x),
where Vg(z) € R" with Vg(z); = dg(x)/0z;, and V3g(z) € R"*" with (V3g(z));; =

d*g(x)/0x;0x;.
o if g(z) = 7, ri(z)?, where r; : R" — R, then
Vg(z) =2 Z ri(z)Vri(z), Vig(z) =2 Z(r.,;(;r)vg'r.i(;l:) + Vri(z)Vri(z)T).
i=1 i=1




Problem 1. (20 points)

If = and y are two positive numbers with x # y, then

T+ Yy
2

xy > ().

(The arithmetic mean (z + y)/2 is always greater than the geometric mean z1.)
The following Matlab code evaluates the left hand side of the inequality at = 1 and
y = 1.01, rounding the result of the square root to 4 significant digits:

> gl y=) 013
>> (x+y)/2 - chop(sqrt(xx*y),4)

ans =

-2.2204e-016
The result is clearly wrong because it should be positive. (The correct answer is 1.24 - 1672

1. Explain why the result is wrong. (You do not have to explain the numerical value of
the result.)

9. Give a more stable method for evaluating (x + y)/2 — /Zy when x = y. (You should
assume that square roots are evaluated with 4 correct significant digits, and that mul-
tiplications, divisions, additions, and subtractions are exact.)

Answer for problem 1.




Problem 2. (20 points)

A matrix C' is defined as

C= Auw’B
where A € R™™", B € R"", u € R", and v € R". The product on the right hand side
can be evaluated in many different ways, e.¢., as A(u(v" B)) or as A((uv”)B), etc. What is
the fastest method (i.e., requiring the least number of flops) when n is large? Explain your
Answer.

Answer for problem 2.




Problem 3. (20 points)

You are given a nonsingular matrix A, and you would like to obtain an idea of the condition
number x(A) without calculating the exact value of x(A4). To estimate the condition number
you evaluate the matrix-vector product Az for a few different values of z, and calculate the

norm of x and the norm of Axr. The following table shows the results for four vectors z(!).
2) (3 {4)
e A 2 S e O

=@ | [l Az
i =1 1 100
=21 100 l
=3 10° 104
i=4 | 107" 107

What are the best (i.e., largest) lower bounds on ||A||, |A"|| and x(A) that you can derive
based on this information?

Answer for problem 3.



Problem 4. (20 points)

Consider the set of p + ¢ linear equations in p + g variables

L jHﬂ:[f} (1)

A e RP* be RP, and ¢ € RY are given. The variables are # € R? and y € R”.

1. Show that the coefhicient matrix

el |
A =

is nonsingular, regardless of the rank and the dimensions of A. Hint. Show that the
matrix I + A’ A is nonsingular.

2. We can conclude from part 1 that the solution Z, § of (1) is unique. Show that T

minimizes
| Az — bJ12 + Jlz + ]

Answer for problem 4.




Problem 5. (20 points)
Consider the underdetermined set of linear equations
Az+ By=15 (2)

where b € R?, A € RP*?, and B € RP*? are given. The variables are z € R? and y € R".
We assume that ¢ < p, that A is nonsingular, and that B is full rank (z.e., Rank B = q).
The equations are underdetermined, so there are infinitely many solutions. For example, we
can pick any y, and solve the set of linear equations Axr = b — By to find z.

Below we define four solutions that minimize some measure of the magnitude of x, or y, or
both. For each of these solutions, describe the factorizations (QR, Cholesky, or LU with
partial pivoting) that you would use to calculate x and y. Clearly specify the matrices that
vou factorize, and the type of factorization. If you know several methods, you should give
the most efficient one (least number of flops for large p, g).

1. The solution x, y with the smallest value of ||z||* + ||y||* = H ; ]

1

The solution x, y with the smallest value of ||z||* + 2||y||*.
3. The solution x, y with the smallest value of ||y||°.

. . )
4. The solution x, y with the smallest value of ||z||*.

Answer for problem 5.




Problem 6. (20 points)

Below we define three functions g that we want to minimize (see equations (3), (4), (5)). For
each of these three functions, explain which of the following three methods you would use
to minimize ¢: linear least-squares via QR factorization, Newton’s method. or the Gauss-
Newton method.

e If your answer is linear least-squares, you should express the problem in the standard
form of minimizing ||Az — b||2, and give the matrix A, the vector of variables z, and
the right hand side b.

e If your answer is Newton’s method, you should describe how you construct the Hessian
and gradient of g, and how you would choose the starting point.

e If your answer is Gauss-Newton method, you should describe how you construct the
linear least-squares problems that you have to solve at each iteration, and how you
would choose the starting point.

Note: The description of the problem is long, but all the information you need is summa-
rized in the definitions of ¢ (i.e., the equations (3), (4), (5)). The rest of the discussion is
background and can be read quickly.

The figure shows a leveling network used to determine the vertical height (or elevation) of
three landmarks.

node 1

edge 4 edge 5

node 4 node 3

The nodes in the graph represent four points on a map. The variables in the problem are the
heights hy, ha, hs of the first three points with respect to the fourth, which will be used as
reference (in other words we take hy = 0). Each of the five edges in the graph represents a
measurement of the height difference of its two end points. For example, edge 1 from node 2
to node 1 indicates a measurement of hy — he. We will denote the measured values of the
five height differences as py, pa, p3, pa, p5. Our goal is to determine hy, hs, and hs from the
five measurements. We distinguish three situations.
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1. There is a small error in each measurement. The measured values are

pr = h—hy+u
pa = hy—hy+ vy
p3 = —hy+us
py = —ho+ 1y
ps = ha— hz+ s

where vy, ..., vs are small and unknown measurement errors. To estimate the heights,
we minimize the function

g(hi, ha,hs) = (hy—ho — p1)* + (hs — hy — p2)* + (—h1 — p3)
e (—hg - fJ,-|)2 + (h.g = fl"-;g = ﬂr,)3 (3)

The variables are hy, hy, hy. The numbers p; are given.

2

2. In addition to the measurement errors v;, there is a systematic error, or offset, w in
the measurement device. We actually measure

pr = hh—ho+v+w
P = ha—h+vm+w
ps = —hi+wm+w
pg = —hat+v+w
ps = hy—hs+vs +w.

To estimate hy, he, hz, and w we minimize
g(hy, ha,w) = (hy —ho+w —p)> + (hs — hy +w — p2)* + (—hy +w — p3)*
+ (—ha +w — ps)® + (ha — hs +w — ps)*. (4)
The variables are hy, hs, hs, and w. The numbers p; are given.

[ 4 0® i - :--\’
3. In addition to the measurement errors v;, there is an error caused by nonlinearity of
the measurement device. We actually measure =

L = ()'.!.1 = hg) + ﬂ’(h-] — h—g)ﬂ +
oy = (.’?,3 == hl) +- E’E(h;; C h,l):i + 9

Pz = “hl — ﬂ'h? -+ T3
pr = —hy—ah)+uy

ps = (ha — h3) + alhs — hs)® + vs.
where @ € R is small and given. To estimate hy, hs, hy, we minimize
g(hy,ho,hy) = ((hl — ha) + a(h, — h.,b)"* — p,)i + ((h._-; — hy) + alhs — hi)® — pg)
+ (—hl — crh:f — pg)g 4- (——h.g — cth.f_i - p4)2
-+ ((h,g — hg) + alhs — h3)® — p5)2. (5)

The variables are hy, hs, and hs. The numbers p; and o are given. You know that «
is small. '

<
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