EE 103 – MIDTERM EXAMINATION Winter 2008

Instructions:

- (a) The exam is closed-book (except for one page of notes) and will last 75 minutes.
- (b) You may use a calculator if you are no longer able to perform arithmetic by hand but you may not (and need not) use a calculator to solve any problem.
- (c) Notation will conform as closely as possible to the standard notation used in the lectures.
- (d) Do all 4 problems. Each problem is worth 25 points. Some partial credit may be assigned if warranted.
- (e) Label clearly the problem number and the material you wish to be graded.
- 1. Let $A \in \mathbb{R}_n^{n \times n}$ have an LU factorization A = LU. Determine the LU factorizations of the following matrices in terms of the matrices L and U:

(a)
$$\begin{bmatrix} A & 0 \\ 0 & A \end{bmatrix}$$

(b)
$$\begin{bmatrix} A & A \\ 0 & A \end{bmatrix}$$

(c)
$$\begin{bmatrix} A & 0 \\ A & A \end{bmatrix}$$

(d)
$$\begin{bmatrix} A & A \\ A & 0 \end{bmatrix}$$

(e)
$$\begin{bmatrix} A & A \\ A & 2A \end{bmatrix}$$

2. Suppose $x, y \in \mathbb{R}^n$. Use the determinant formulas given in class to show that

$$\det(I - xy^T) = 1 - y^T x.$$

Hint: Recall that the determinant formulas involve computing det $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$. Evaluate this formula two different ways for the same appropriate values of A, B, C, D. You will receive no credit for other ways of trying to evaluate the determinant.

- 3. (a) Write the Lagrangian form of the polynomial that interpolates the points (1, 4), (2, 8), (3, 16). Note that there is no need to simplify the polynomial.
 - (b) Write the *power form* of the polynomial above, i.e., simplify the polynomial.
- 4. (a) What is $\kappa_1(A)$ when $A = \begin{bmatrix} 1 & 10^k \\ 0 & 1 \end{bmatrix}$, where k is an integer ≥ 1 ? (a) $(2+10^k)^2$ (b) $(2+10^k)$ (c) $(1+10^k)^2$ (d) $(1+10^k)$ (e) none of these
 - (b) pchiptx computes a value of d_k as the harmonic mean of two same sign slopes. What is the harmonic mean of 2 and 4?
 (a) 3 (b) ⁸/₃ (c) √8 (d) π (e) none of these
 - (c) Which of the following is not a permutation matrix?

(a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (e) a	ll are
---	--------

(d) Suppose Newton's method is employed to solve the equation $x^2 - 5 = 0$ starting from $x_1 = 1$. Evaluate the next iterates x_2 and x_3 . Then $x_3 = ?$ (a) $\frac{9}{4}$ (b) $\frac{81}{36}$ (c) $\sqrt{5}$ (d) $\frac{161}{72}$ (e) none of these

(e) Suppose the secant method is employed to solve the equation $x^2 - 5 = 0$ starting from $x_0 = 2$ and $x_1 = 3$. Evaluate the next iterates x_2 and x_3 . Then $x_3 = ?$ (a) $\frac{144}{65}$ (b) $\frac{29}{13}$ (c) $\sqrt{5}$ (d) $\frac{11}{5}$ (e) none of these