EE 103 – FINAL EXAMINATION Winter 2008

Instructions:

- (a) The exam is closed-book (except for one page of notes) and will last 2 hours.
- (b) You may use a calculator if you are no longer able to perform arithmetic by hand but you may not (and need not) use a calculator to solve any problem.
- (c) Notation will conform as closely as possible to the standard notation used in the lectures.
- (d) Do all 6 problems. Problems 1-5 are worth 15 points each, problem 6 is worth 25 points (5 points each). Some partial credit may be assigned if warranted.
- (e) Label clearly the problem number and the material you wish to be graded.
- 1. In a certain experiment, the following measurements (t_i, y_i) are taken:

(-2,4), (-1,0), (0,-2), (1,-1), (2,6)

It is desired to "fit" this data set with a function of the form

 $y = \beta_1 t^2 + \beta_2$

where β_1 and β_2 are parameters to be determined. Compute the best parameters β_1 and β_2 using the method of least squares (by solving the normal equations since your calculations will be done by hand!).

- 2. Consider a Householder reflector of the form $H = I \frac{2}{u^T u} u u^T$ for some nonzero vector $u \in \mathbb{R}^n$.
 - (a) Show that Hu = -u.
 - (b) It is known that a Householder reflector has n-1 eigenvalues at 1. What is the value of det(H)? (Note: You must justify your answer carefully. Merely writing down a number will be worth 0 points.)

3. Compute $\kappa(2, A) (= \kappa(\lambda, A))$ for the matrix $A = \begin{bmatrix} 2 & 1000 \\ 0 & 3 \end{bmatrix}$.

4. Compute
$$A^{100}$$
 for $A = \begin{bmatrix} 7 & 6 \\ -4 & -3 \end{bmatrix}$.

- 5. (a) A matrix $A \in \mathbb{R}^{m \times n}$ has SVD $A = U\Sigma V^T$ where U and V are orthogonal. What is an SVD of A^T ?
 - (b) A real $n \times n$ matrix $A = A^T > 0$ has an eigenvalue decomposition $A = X\Lambda X^T$ with $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ with all $\lambda_i > 0$ and X is orthogonal. What is an SVD of A?
 - (c) A real $n \times n$ matrix $A = A^T < 0$ has an eigenvalue decomposition $A = X\Lambda X^T$ with $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$ with all $\lambda_i < 0$ and X is orthogonal. What is an SVD of A?
- 6. In each case, choose the best answer, (A), (B), (C), (D), or (E).
 - (a) The characteristic equation of a matrix A ∈ ℝ^{n×n} can also be defined by det(λI − A) = 0. Using this definition, which of the following is true?
 (A) it's always a polynomial of degree n (B) it's never a polynomial of degree n (C) this can't be the definition (D) this polynomial may have complex coefficients (E) none of these
 - (b) If $A = U\Sigma V^T$ is an SVD of A then $A^+ =$ (A) A^{-1} (B) $V\Sigma^+U^T$ (C) $U\Sigma^+V^T$ (D) $V\Sigma U^T$ (E) none of these
 - (c) Which of the following matrices is not diagonalizable? (A) $\begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ (E) all are
 - (d) The extrapolated Simpson's rule (the one implemented in quadtx) is employed to evaluate $\int_0^1 x^4 dx$. What is the value thus obtained? (A) $\frac{17}{90}$ (B) $\frac{1}{5}$ (C) $\frac{19}{90}$ (D) 0.2001 (E) none of these
 - (e) The initial value problem $\dot{y} = 1 + t^2 + y$; y(0) = 1 is integrated via one step of Euler's method with step size h = 0.01. What is the result? (A) 1.01 (B) 1.00 (C) 0.98 (D) 1.02 (E) none of these