
L. Vandenberghe 2/12/02
EE103

Midterm Solutions

Problem 1. (20 points)

Suppose you are asked to find a quadratic function

f(u1, u2) =
[

u1 u2

] [
p11 p12

p12 p22

] [
u1

u2

]
+

[
q1 q2

] [
u1

u2

]
+ r

that satisfies the following six conditions:

f(0, 1) = 6, f(1, 0) = 6, f(1, 1) = 3, f(−1,−1) = 7, f(1, 2) = 2, f(2, 1) = 6.

The variables in the problem are the parameters p11, p12, p22, q1, q2 and r.
Show that you can determine p11, p12, p22, q1, q2, and r by solving a set of linear equations
Ax = b. State clearly what A, x, and b are. You do not have to solve the equations, or show
that they are solvable.

SOLUTION. We can write f(u1, u2) as

f(u1, u2) = u2
1 p11 + 2u1u2 p12 + u2

2 p22 + u1q1 + u2q2 + r.

For given u1 and u2, this is a linear function of p11, p12, p22, q1, q2, r. For example, f(0, 1) = 6
means

p22 + q2 + r = 6.

We therefore obtain the following set of equations:




0 0 1 0 1 1
1 0 0 1 0 1
1 2 1 1 1 1
1 2 1 −1 −1 1
1 4 4 1 2 1
4 4 1 2 1 1







p11

p12

p22

q1

q2

r




=




6
6
3
7
2
6




.
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Problem 2. (20 points)

1. For what values of a1, a2, . . . , an is the n × n-matrix

A =




a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

...
...

. . .
...

...
an−2 0 0 · · · 1 0
an−1 0 0 · · · 0 1
an 0 0 · · · 0 0




nonsingular?

2. Assuming A is nonsingular, how many floating-point operations (flops) do you need to
solve Ax = b?

3. Assuming A is nonsingular, what is the inverse A−1? (In other words, express the
elements of A−1 in terms of a1, a2, . . . , an.)

SOLUTION.

1. an �= 0. We can derive this from the definition of nonsingular matrices: A is nonsingular
if and only if Ax = 0 implies x = 0.

Ax = 0 means

x2 = −a1x1

x3 = −a2x1

...

xn = −an−1x1

anx1 = 0.

If an �= 0, then from the last equation, x1 = 0, hence also x2 = x3 = · · · = xn = 0, i.e.,
x = 0, so A is nonsingular.

If an = 0, then we can take x1 = 1, x2 = −a1, x3 = −a2, etc., and obtain a nonzero x
with Ax = 0. Therefore A is singular.

2. If we put the last equation first we obtain

anx1 = bn

a1x1 + x2 = b1

a2x1 + x3 = b2

...

an−1x1 + xn = bn−1.
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We can solve these equations by forward substitution:

x1 = bn/an

x2 = b1 − a1x1

x3 = b2 − a2x1

...

xn = bn−1 − an−1x1,

which takes 2n − 1 flops.

3. We can find A−1 by solving AX = I column by column using the method of part 2:

A−1 =




0 0 0 · · · 0 1/an

1 0 0 · · · 0 −a1/an

0 1 0 · · · 0 −a2/an

0 0 1 · · · 0 −a3/an
...

...
...

. . .
...

...
0 0 0 · · · 1 −an−1/an




.
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Problem 3. (20 points)

Give the matrix norm ‖A‖ of each of the following matrices A. Explain your answers.

1. A =

[
1 1
1 1

]

2. A =

[
1 −1
1 1

]

3. A =




1 1 0
1 1 0
0 0 −3/2




4. A =




1 −1 0
1 1 0
0 0 −3/2




SOLUTION.

1. ‖A‖ = 2.

We have Ax = (x1 + x2, x1 + x2) and ‖Ax‖ =
√

2|x1 + x2|. From the identity aT x =
‖a‖ ‖x‖ cos � (a, x) with a = (1, 1), we know that

|x1 + x2| ≤
√

2
√

x2
1 + x2

2

with equality if x1 = x2. Therefore,

‖A‖ = max
x �=0

‖Ax‖
‖x‖ = max

x �=0

√
2
|x1 + x2|√

x2
1 + x2

2

= 2.

2. ‖A‖ =
√

2.

Ax = (x1 − x2, x1 + x2) and ‖Ax‖ =
√

(x1 − x2)2 + (x1 + x2)2 =
√

2(x2
1 + x2

2).

Therefore

‖A‖ = max
x �=0

‖Ax‖
‖x‖ = max

x �=0

√
2(x2

1 + x2
2)√

x2
1 + x2

2

=
√

2.

3. ‖A‖ = 2.

Ax = (x1 + x2, x1 + x2,−(3/2)x3) and ‖Ax‖ =
√

2(x1 + x2)2 + (9/4)x2
3.

From part 1 we know that

2(x1 + x2)
2 + (9/4)x2

3 ≤ 4x2
1 + 4x2

2 + (9/4)x2
3
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with equality if x1 = x2. This allows us to derive the norm in the same way as for a
diagonal matrix with diagonal elements (2, 2, 3/2):

‖A‖ = max
x �=0

‖Ax‖
‖x‖

≤ max
x �=0

√
4x2

1 + 4x2
2 + (9/4)x2

3√
x2

1 + x2
2 + x2

3

≤ max
x �=0

√
4x2

1 + 4x2
2 + 4x2

3√
x2

1 + x2
2 + x2

3

= 2.

This shows that ‖A‖ ≤ 2. Moreover we have ‖Ax‖/‖x‖ = 2 for x = (1, 1, 0), so
‖A‖ = 2.

4. ‖A‖ = 3/2.

Ax = (x1 − x2, x1 + x2,−(3/2)x3) and ‖Ax‖ =
√

2x2
1 + 2x2

2 + (9/4)x2
3.

The derivation is the same as for a diagonal matrix with diagonal elements (
√

2,
√

2, 3/2):

‖A‖ = max
x �=0

‖Ax‖
‖x‖

= max
x �=0

√
2x2

1 + 2x2
2 + (9/4)x2

3√
x2

1 + x2
2 + x2

3

≤ max
x �=0

√
(9/4)x2

1 + (9/4)x2
2 + (9/4)x2

3√
x2

1 + x2
2 + x2

3

= 3/2.

This shows that ‖A‖ ≤ 3/2. Moreover we have ‖Ax‖/‖x‖ = 3/2 for x = (0, 0, 1), so
‖A‖ = 3/2.
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Problem 4. (20 points)

You are given a nonsingular n × n-matrix A and an n-vector b. You are asked to evaluate

x = (I + A−1 + A−2 + A−3) b

where A−2 = (A2)−1 and A−3 = (A3)−1.
Describe in detail how you would compute x, and give the flop counts of the different steps
in your algorithm. If you know several methods, you should give the most efficient one (least
number of flops for large n).

SOLUTION.

1. LU-factorization A = PLU ((2/3)n3 flops).

2. Calculate y = A−1b by solving PLUy = b:

(a) Calculate v = P T b (0 flops, because P T b is a permutation of b)

(b) Solve Lw = v by forward substitution (n2 flops)

(c) Solve Uy = w by backward substitution (n2 flops)

3. Calculate v = A−2b = A−1y by solving PLUv = y (2n2)

4. Calculate w = A−3b = A−1v by solving PLUw = v (2n2)

5. x = b + y + v + w (3n).

Total: (2/3)n3 + 6n2 + 3n.
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Problem 5. (20 points)

You are given the Cholesky factorization A = LLT of a positive definite n×n-matrix A, and
a vector u ∈ Rn.

1. What is the Cholesky factorization of the (n + 1) × (n + 1)-matrix

B =

[
A u
uT 1

]
?

You can assume that B is positive definite.

2. What is the cost of computing the Cholesky factorization of B, if the factorization of
A (i.e., the matrix L) is given?

3. Suppose ‖L−1‖ ≤ 1. Show that B is positive definite for all u with ‖u‖ < 1.

SOLUTION.

1. We need to find L11 ∈ Rn×n, L21 ∈ R1×n, L22 ∈ R such that

B =

[
A u
uT 1

]
=

[
L11 0
L21 L22

] [
LT

11 LT
21

0 L22

]
.

Moreover L11 must be lower triangular with positive diagonal elements, and L22 > 0.
This gives the following conditions:

A = L11L
T
11, u = L11L

T
21, 1 = L21L

T
21 + L2

22.

The first equation states that L11 must be the Cholesky factor of A, which is given:
L11 = L. The second condition allows us to compute L21:

LT
21 = L−1u.

The last condition gives L22:

L22 =
√

1 − L21LT
21 =

√
1 − uT L−T L−1u =

√
1 − uT A−1u.

Putting everything together, we obtain the Cholesky factorization of B:

B =

[
L 0

uT L−T
√

1 − uT L−T L−1u

] [
LT L−1u

0
√

1 − uT L−T L−1u

]
.

2. n2 flops.

We are given L, so we only need to compute L21 and L22. We can compute L−1u by
solving the set of equations Lx = u, which takes n2 flops because L is lower triangular.
Computing

√
1 − uT L−T L−1u =

√
1 − xT x takes roughly 2n flops, so the total cost is

about n2.

3. Suppose ‖L−1‖ ≤ 1 and ‖u‖ < 1. It follows from one the properties of the matrix
norm (‖Ax‖ ≤ ‖A‖ ‖x‖) that

uT L−T L−1u = ‖L−1u‖2 ≤ ‖L−1‖2‖u‖2 < 1.

Therefore the Cholesky factorization of B exists, i.e., B is positive definite.
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