UCLA Electrical Engineering Department <u>EE102: Signals and Systems</u> FINAL EXAMINATION Summer 2015 Wednesday, August 12, 2015

Exam Duration: 3 hrs. Total: 50 points

NAME:

	1	2	3	4	5	Total
Marks Obtained						
Maximum Marks	12	10	9	9	10	50

Instructions

- 1. Closed Book, Calculators, Cell Phones and IPods Are NOT Allowed
- 2. A Two-Sided Sheet (8.5 x 11.0) of Notes IS Allowed
- 3. If you use extra sheet, then make sure to staple them with these examination papers

PLEASE MAKE SURE THAT YOU HAVE 11 PAGES OF THESE EXAMINATION PAPERS

NUMBER OF YOUR SUBMITTED PAGES: []

1. (12 pts) Xmas Gift – Wrapped & Unwrapped

(i) (2.5 pts) A system with input signal x(t) and output signal y(t) can be: Linear, Timeinvariant and/or Causal. Determine which of these properties hold and which do not hold for continuous-time system $y(t) = [A + x(t)] \cos(\omega_c t)$. Justify your answer.

- (ii) (4.5 pts) Determine if each of the following statements about LTI systems is *true* or *false*.Write a sentence justifying your answer. Just answering True or False will only get you half a point.
 - (a) If an LTI system is causal, then it is stable.

(b) The cascade of a noncausal LTI system with a causal LTI system must be noncausal.

(c) Time-reversing the input to a LTI system results in a time-reversed output.

(iii) (2 pts) What is the Nyquist rate for the signal $f(t) = sinc(200t) + sinc^2(200t)$?

(iv) (3 pts) Evaluate the following integral with the help of Fourier transform theorems. $\int_{-\infty}^{\infty} (sinc(t))^4 dt$

2. (10 pts) Revisiting LTI systems – Laplace to Fourier

Note: (i) and (ii) are standalone questions

(i) (6 pts) Consider the following interconnections of LTI systems $h_1(t)$ and $h_2(t)$.

(a) (2 pts) Express the overall system response $h_{TOT}(t)$ in terms of the impulse responses $h_1(t)$ and $h_2(t)$.

(b) (3 pts) Assume that the system 1 in inverse of system 2, i.e. $h_1(t) * h_2(t) = \delta(t)$. Simplify your answer to (a). (c) (1 pt) From your answer in (b), what is the purpose of overall system?

(ii) (4 pts) The PZP (Poles-Zeroes-Plot) of the Laplace Transform H(s), of the IRF h(t), of a LTIC system S, has the following characteristics:

zero of order 1 at : 3
pole of order 1 at : -1
pole of order 2 at : -2
$$H(0) = -\frac{3}{2}$$

Find h(t).

3. (9 pts) Fourier Series and MSE

(i) (3 pts) Find the Fourier series expansion, the amplitude and phase spectra of the periodic signal $f(t) = \cos(\pi t)$.

(ii) (2 pts) Compute the mean square error when f(t) is approximated by $F_0 + F_1 e^{j\pi t} + F_{-1} e^{-j\pi t}$ (iii) (4 pts) The signal above is applied to the linear system whose system function is

$$H(s) = \frac{2s}{2s+1}$$

Find the amplitude and phase spectra of the output.

4. (9 pts) Fourier Transform and Parseval

(i) (1.5 pts) What is/are the condition(s) for a function to have both Laplace and Fourier Transforms? Explain with an example.

(ii) (3.5 pts) Let h(t), x(t), and y(t), for $-\infty < t < \infty$, be the impulse response function, the input, and the output of a linear time-invariant system, respectively. Give the following spectra:

Find $H(\omega)$ from the above spectra and from the fact that $H(\omega) = 0$ for ω not belonging to the interval (-2,2). Find the impulse response function h(t) from $H(\omega)$ found above. Is the system causal?

(iii) (4 pts) Find the energy in the signal $f(t) = e^{-at}u(t)$, and find the bandwidth W such that 95% of the energy is contained in frequencies below W for a = 1. (Leave the solution in fraction form if required)

5. (10 pts) Half-wave symmetry

Let f(t) be a periodic signal of period 1. One says that f(t) has half-wave symmetry if

$$f\left(t-\frac{1}{2}\right) = -f(t)$$

(a) (4 pts) Does $f(t) = \sin(2\pi t) + \sin(4\pi t)$ have half-wave symmetry? Find its Fourier series.

(b) (6 pts) If f(t) has period 1, has half-wave symmetry and its Fourier series is

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{j2n\pi t}$$

show that $c_n = 0$ if *n* is even.

•

P1. (i)
$$\Im(t) = [A + \chi(t)] Cas(\omega_c t)$$

• Linear: if $A \neq 0$, then it is not linear.
 $IF A = 0$, then it is hear.
• Time - invariant:
 $\chi(t) = \chi(t-t_0) \Rightarrow \Im_1(t) = [A + \chi_1(t_1)] Cn(\omega_c t)$
 $= [A + \chi(t-t_0)] Cn(\omega_c t) + (A + \chi(t-t_0)] Cn(\omega_c t) + (A + \chi(t-t_0)] Cn(\omega_c (t-t_0))$
Therefore, $\Im_1(t) \neq \Im(t-t_0)$. So it is not time-invariant
• Causal: $\Im(t) depends on \chi(t)$, so it is Causal.
(ii) (a) False. Example: $h(t) = u(t)$.
 $g_{1(t)} = \chi(t_0) = h(t) = u(t_0)$.
 $g_{1(t)} = \int [h(t_0)] dt \to \infty$. and it is not stable.
(b) False $\chi(t_0) = \frac{h_1(t_0)}{h_1(t_0)} \to \Im(t)$
 $h(t) = h_1(t_0) + h_2(t_0)$
 $h_1 Causal, h_2 non-causal.$
Consider $h_1(t) = u(t-2)$ and $h_1(t) = \chi(t-1)$
 $\Rightarrow h(t) = h_1(t_0) + h_2(t_0) = u(t-2) + \chi(t+1) = u(t-1)$

$$(c)False \quad y(t) = x(t) * h(t)$$

$$g(t) = x(-t) * h(t)$$

$$g(t) = x(-t) * h(t)$$

$$\Rightarrow f(\omega) = x(-\omega) H(\omega) \neq f(-\omega)$$

$$\Rightarrow g(t) \neq g(-t)$$
(iii) Considur $f(t) = sinc(t)$ and $f(t) = (f_1(t))^{\frac{1}{2}} = (sinc(t))^{\frac{1}{2}}$
and $sinc(t) = \frac{sin(t)}{t}$

$$F(\omega) = (\frac{1}{2\pi})^2 F_1(\omega) * F_1(\omega) * F_1(\omega) * F_1(\omega)$$

$$F_1(\omega) = f(t)^{\frac{1}{2}} = \frac{1}{2} \begin{cases} sinc(t)^{\frac{1}{2}} = \pi \operatorname{vect}(\frac{\omega}{2}) \\ -1 & 1 \end{cases}$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) * F_1(\omega) \Rightarrow \frac{1}{-1} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) = \frac{1}{2} \qquad \pi \operatorname{vect}(\frac{\omega}{2}) \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

$$F_1(\omega) = \frac{1}{2} \qquad \pi \operatorname{vect}(\frac{\omega}{2})$$

Problem 1

part (ini) f(t) = Sinc (200t) + Sinc (200f). Bandwidth of sinc (200t) is 200. Bandwidth of sinc (200t) is 400. Therefore, bandwidth of FITI is 400. So, Nyquist rate is 2×400 = 800 Hz

$$\begin{aligned} y(t) &= 2 + h_1 + h_1 + h_1 + h_1 + h_2 + h_2 + h_1 + h_2 + h_2 \\ &= 2 + h_1 + h_2 + h_2 + h_1 + h_2 + h_2 \\ &= 2 + h_1 + h_2 + 2 + h_1 + h_1 + h_2 + h_2 \\ &= h_1(t) + h_2(t) + h_1(t) + h_1(t) + h_1(t) + h_1(t) \end{aligned}$$

6) if
$$h_1(t) \star h_2(t) = S(t)$$
, then
 $h_{TDT}(t) = S(t) + S(t) \star S(t) = 2S(t)$

(c) The system doubles the input. as (t)= 2x(t).

(ii)
$$H(s) = \frac{2(s-3)}{(s+1)(s+2)^2}$$
 $Roc = \{Recs\} > -1\} since LTLC$
 $H(s) = \frac{A}{S+1} + \frac{B}{S+2} + \frac{C}{(s+2)^2} = \frac{(A+B)s^2 + (4A+3B+C)s + (4A+2B+C)}{(S+1)(s+2)^2}$
 $A+B=0$
 $4A+3B+C = 2 \implies A= -8, B=8, C=10$
 $4A+2B+C = -6$

 $\Rightarrow h(t) = L^{-1}(H(t)) = -8e^{-t}u(t) + 8e^{-2t}u(t) + 10te^{-2t}u(t).$

P3. (i)
$$f(t) = Gn(\pi t)$$

 $T = 2, w_{1} = \frac{2\pi}{2} = \pi$
 $f(t) = Gn(\pi t) = \frac{1}{2} e^{i\pi t} + \frac{1}{2} e^{-j\pi t} = \sum_{n=-\infty}^{\infty} F_{n} e^{jn\pi t}$
 $\Rightarrow F_{1} = \frac{1}{2}, F_{-1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
 $\Rightarrow \frac{11^{n} df}{1 + 1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
 $\Rightarrow \frac{11^{n} df}{1 + 1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
 $\Rightarrow \frac{11^{n} df}{1 + 1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
 $\Rightarrow \frac{11^{n} df}{1 + 1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
 $\Rightarrow \frac{11^{n} df}{1 + 1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
 $\Rightarrow \frac{11^{n} df}{1 + 1} = \frac{1}{2}, F_{n} = 0, \text{ for } n \neq 1$
(ii) $f(t) = \sum_{n=-\infty}^{\infty} F_{n} e^{jn\pi t}$
 $f(t) = F_{n} e^{j\pi t}$
 $f(t) = \frac{1}{2} \int_{T} \left\{ \frac{1}{2} F_{n} e^{j\pi t} \right\}^{2} dt$
 $perserval Trueorem$
 $= \sum_{n=-\infty}^{\infty} |F_{n}|^{2} = \sum_{n=-\infty}^{\infty} |F_{n}|^{2} - \{|F_{0}|^{2} + |F_{1}|^{2} + |F$

(iii)
$$H(s) = \frac{2s}{2s+1}$$
,
Consider ROC: $\{3: Re(s)7 - \frac{1}{2}\}$. Therefore, Roc includes $S=jin$.
just $H(w) = \frac{2}{2w+1}$
 $e \rightarrow H(w) = H(w)e^{jint}$ $H(w) = \frac{2}{2w+1}$
 $= \frac{2\pi}{3w+1} F_1 H(\pi) e^{jint} + F_1 H(-\pi) e^{jint}$
 $= \frac{2\pi}{2w+1} F_1 e^{jint} - \frac{2\pi}{1-2\pi} F_{-1} e^{jint}$
 $Y_1 = \frac{2\pi}{2\pi+1} F_1$, $Y_2 = \frac{-2\pi}{1-2\pi} F_{-1}$

P4. (i) A signal xitt has a haplace Transform whenever it
is of exponential order. That is, there must be a
real number B such that

$$\lim_{x \to \infty} |x(t)e^{-Bt}| = 0$$
.
 $t \to \infty$
For example, every exponential signal $x(t) = Ae^{at}$ has Laplace
Thuskom.
A signal $x(t)$ has Fourier transform whenever it is
absolutely integrable. That is,
 $\int_{-\infty}^{\infty} |x(t)| dt < \infty$.
For example, $x(t) = e^{t}u(t)$ has Fourier transform
 $X(w) = \frac{1}{H_{1}w}$, Since $\int_{-\infty}^{\pi} x(t) | 4t = \int_{\infty}^{\infty} e^{t} dt \le 1 < \infty$.

.

िंकु 1 14 -इ. र

(ii) Consider two Complex numbers
$$\alpha = r_1 \stackrel{j\theta_1}{\leftarrow}$$
 and $\beta = r_2 e^{j\theta_2}$
where r_1 and r_2 are amplitudes and θ_1, θ_2 are phonen.
 $\alpha \cdot \beta = r_1 r_2 e^{j(\theta_1 + \theta_2)}$. Therefore, $d\beta$ has amplitude $r_1 r_2$
and phase $\theta_1 + \theta_2$.
 $Y(\omega) = H(\omega) X(\omega)$, and $H(\omega) = 0$ for $\omega \in (-t_1 2)$
 $= \frac{1}{2} + \frac{1}{2} = \omega$
 $\zeta = H(\omega) = \zeta = (\omega) - \zeta X(\omega) = \zeta = \zeta = (-1)^{1} + (\omega)^{1} - 2\zeta = \omega \leq 2$
 $H(\omega) = \zeta = (-1)^{-2} + \zeta = (-1)^{1} +$

$$(iii) \qquad E_{f} = \int_{-\infty}^{\infty} |f(t)|^{2} dt = \int_{0}^{\infty} e^{-2at} dt = \frac{-1}{2a} e^{2at} \int_{0}^{\infty} = \frac{1}{2a}, a > 0$$

$$F(\omega) = \frac{1}{a+j\omega} \implies |F(\omega)| = \frac{1}{\sqrt{a^{2}+\omega^{2}}} = \frac{1}{-w} \int_{-w}^{1} |f(u)|^{2} d\omega = \frac{1}{\sqrt{a^{2}+\omega^{2}}} = \frac{\pi}{a}$$

$$\int_{-\infty}^{\infty} |F(\omega)|^{2} d\omega = 2\pi \int |f(t)|^{2} dt = \frac{2\pi}{2a} = \frac{\pi}{a}$$
Set $a=1$. For what W , $\int_{-W}^{W} |F(\omega)|^{2} d\omega = 0.95 \pi$?
$$\int_{-W}^{W} (\frac{1}{\sqrt{\omega^{2}+1}})^{2} d\omega = \int_{-W}^{W} \frac{1}{1+\omega^{2}} d\omega = \tan(\omega) \int_{-W}^{W} = 2\tan(w)$$

$$2\tan(w) = 0.95 \pi \implies W = \tan(a.95 \times \frac{\pi}{2}) \le 12.7 + H^{2}$$

مە يە مەر

· P5.

- 2 × 1 × 1

$$\begin{array}{l} (a) \quad f(t) = \sin(2\pi t) + \sin(4\pi t) \quad , \quad \tau_{\pm}) \quad , \quad w_{0} = 2\pi \\ f(t-\frac{1}{2}) = \sin\left(2\pi (t-\frac{1}{2})\right) + \sin(4\pi t-\frac{1}{2}) \\ = \sin(2\pi t-\pi) + \sin\left(4\pi t-2\pi\right) \\ = -\sin(2t) + \sin\left(4\pi t\right) \\ = -\sin(2t) + \sin\left(4t\right) \\ = -f(t) \\ f(t) \quad i_{5} \quad nat \quad half \ uay \quad symetric \\ f(t) = \frac{1}{2j} \quad e^{-j2\pi t} + \frac{1}{2j} e^{-j4\pi t} \\ = \frac{j2\pi t}{2j} \quad f_{7} = f_{-2} = -\frac{1}{2j} \quad , \quad f_{7} = 0, \quad n \neq \pm 1, \pm 2 \\ F_{1} = F_{2} = \frac{1}{2j} \quad , \quad F_{7} = F_{-2} = -\frac{1}{2j} \quad , \quad F_{7} = 0, \quad n \neq \pm 1, \pm 2 \\ (b) \quad f(t-\frac{1}{2}) = \sum_{n} C_{n} e^{j2\pi n t} \\ = \sum_{n} (-1)^{n} e^{-j2\pi \pi t} \quad , \quad f(t-\frac{1}{2}) = \int_{0}^{-1} -C_{n} e^{j2\pi n t} \\ = \sum_{n} (-1)^{n} e^{-j2\pi \pi t} \quad , \quad f(t-\frac{1}{2}) = -C_{n} = 0. \end{array}$$