
EE102 - Winter 2004 - Midterm Solutions

Problem 1 [15 pts]

For the function

f(t) = (t + 1)2[u(t + 1)− u(t)] + (t− 1)3u(t)u(2− t) + u(t− 2).

Sketch f(t) and
df
dt , and give an analytic formula for the latter in its simplest form.

Solution:

f
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dt
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df

dt
= 2(t + 1)[u(t + 1)− u(t)] + 3(t− 1)2[u(t)− u(t− 2)]− 2δ(t).

1



Problem 2 [20 pts]

We are given a linear system defined by the input-output relationship

y = x + f ∗ x,

where ∗ denotes convolution and the function f(t) = e−|t|.

(a) Is the system time invariant? Causal? Find its impulse response function.

(b) Find the response to the input x(t) = u(t)− u(t− 2).

Solution:

(a) The system is time-invariant. We can check this by definition, using

y(t) = x(t) +
∫ ∞

−∞
f(t− σ)x(σ)dσ, (1)

=⇒ y(t− τ) = x(t− τ) +
∫ ∞

−∞
f(t− τ − σ)x(σ)dσ

= x(t− τ) +
∫ ∞

−∞
f(t− v)x(v − τ)dv = T [x(t− τ)].

Another way would be to note that the system is really defined by a convolution:

y = x + f ∗ x = δ ∗ x + f ∗ x = (δ + f) ∗ x = h ∗ x,

where
h(t) = δ(t) + f(t) = δ(t) + e−|t|.

Therefore the system must be time-invariant, with the above h(t) its impulse response.

Since h(t) is not zero for t < 0, the system is non-causal. We could also deduce this by
definition, since all values of x(t) (past, present and future) are involved in the integral of (1).
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(b) We must compute the convolution

(f ∗ x)(t) =
∫ ∞

−∞
x(t− σ)f(σ)dσ

=
∫ ∞

−∞
[u(t− σ)− u(t− σ − 2)]f(σ)dσ

=
∫ t

t−2
e−|σ|dσ.

Since

e−|σ| =

{
eσ for σ < 0
e−σ for σ ≥ 0

,

we solve the integral by breaking it in cases according to the value of t:

∫ t

t−2
e−|σ|dσ =





∫ t
t−2 eσdσ for t < 0

∫ 0
t−2 eσdσ +

∫ t
0 e−σdσ for 0 ≤ t < 2

∫ t
t−2 e−σdσ for 2 ≤ t

=





et − et−2 for t < 0

1− et−2 + 1− e−t for 0 ≤ t < 2

e−(t−2) − e−t for 2 ≤ t

= u(−t)[et − et−2] + [u(t)− u(t− 2)] · [2− et−2 − e−t] + u(t− 2)[e−(t−2) − e−t]

= 2[u(t)− u(t− 2)] + u(−t)et − et−2[u(−t) + u(t)− u(t− 2)]

+ e−t[−u(t) + u(t− 2)− u(t− 2)] + u(t− 2)e−(t−2)

= 2[u(t)− u(t− 2)] + u(−t)et − u(2− t)et−2 − u(t)e−t + u(t− 2)e−(t−2).

Now, adding the extra term x(t), we get (either expression is a valid answer)

y(t) = u(−t)[et − et−2] + [u(t)− u(t− 2)] · [3− et−2 − e−t] + u(t− 2)[e−(t−2) − e−t]

= 3[u(t)− u(t− 2)] + u(−t)et − u(2− t)et−2 − u(t)e−t + u(t− 2)e−(t−2).
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Problem 3 [15 pts]

S1 S2
x(t) y(t) z(t)

Consider the cascade interconnection of the figure, where S1 is an integrator, and S2 is an LTI
system with impulse response

h2(t) = δ(t) + 3e2tu(t).

We apply a certain input x(t), and obtain the output z(t) = u(t)(−1 + e2t).
Determine x(t) and y(t).

Solution:
We use Laplace transforms since both systems are causal, and the given output z(t) is zero for

t < 0. Its transform is

Z(s) = −1
s

+
1

s− 2
=
−s + 2 + s

s(s− 2)
=

2
s(s− 2)

.

The transfer function of S2 is

H2(s) = 1 +
3

s− 2
=

s + 1
s− 2

,

so we get

Y (s) =
Z(s)
H2(s)

=
2

s(s + 1)
= 2

(
1
s
− 1

s + 1

)
.

Therefore
y(t) = 2u(t)(1− e−t).

Since S1 is an integrator, then

x(t) =
dy

dt
= 2u(t)e−t.

This could also be done by Laplace, noting that H1(s) = 1
s , and computing

X(s) =
Y (s)
H1(s)

=
2

s + 1
.
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Problem 4 [20 pts]

Solve the differential equation

d2f(t)
dt2

− 2
df(t)
dt

+ 2f(t) = 2, t ≥ 0,

with initial conditions
f(0−) = 0,

df(t)
dt

(0−) = 1.

Solution:
Applying Laplace, and its derivative property to the differential equation, we have

[
s2F (s)− f(0−)s− df

dt
(0−)

]
− 2 [sF (s)− f(0−)] + 2F (s) = L[2] =

2
s
.

Using the given initial conditions leads to

(s2 − 2s + 2)F (s) = 1 +
2
s

=
s + 2

s
.

Therefore
F (s) =

s + 2
s(s2 − 2s + 2)

=
A

s
+

Ms + N

s2 − 2s + 2
.

Multiply by s, limit as s → 0 gives

s + 2
s2 − 2s + 2

∣∣∣
s=0

= 1 = A.

Multiply by s, limit as s →∞ gives

s + 2
s2 − 2s + 2

∣∣∣
s→∞

= 0 = A + M, =⇒ M = −1.

One more equation, e.g. set s = 1, gives

s + 2
s(s2 − 2s + 2)

∣∣∣
s=1

= 3 = A + M + N, =⇒ N = 3.

Therefore
F (s) =

1
s

+
−s + 3

s2 − 2s + 2
=

1
s

+
−(s− 1) + 2
(s− 1)2 + 1

,

that leads, using Laplace table and properties, to the solution

f(t) = u(t)
[
1 + et(− cos(t) + 2 sin(t))

]
.
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Problem 5 [30 pts]

Consider the system described by the input-output relationship

y(t) =
∫ t

t−1
σx(σ)dσ. (2)

(a) Is the system (i) linear? (ii) time invariant? (iii) causal?

(b) We apply the input x(t) = u(t) sin(t); find y(t).

(c) Find the Laplace transform Y (s) for the output y(t) in part (b), and its DOC.

Solution:

(a) The system is linear:

T [α1x1(t) + α2x2(t)] =
∫ t

t−1
σ[α1x1(σ) + α2x2(σ)]dσ.

= α1

∫ t

t−1
σx1(σ)dσ + α2

∫ t

t−1
σx2(σ)dσ.

= α1T [x1(t)] + α2T [x2(t)].

It is time-varying:

y(t− τ) =
∫ t−τ

t−τ−1
σx(σ)dσ

=
∫ t

t−1
(v − τ)x(v − τ)dv

6=
∫ t

t−1
vx(v − τ)dv = T [x(t− τ)].

Since the integral in the definition (2) for y(t) only involves values of x(σ) in the interval
[t− 1, t] (past and present), the system is causal.

Another way to solve this would be to rewrite (2) as

y(t) =
∫ ∞

−∞
σ[u(σ − t + 1)− u(σ − t)]x(σ)dσ,

which has the form of a superposition intergral, and therefore the system impulse response
function must be

h(t, σ) = σ[u(σ − t + 1)− u(σ − t)].

Since it depends on both t and σ (not just the difference), and it is zero for t < σ, this implies
the system is time-varying and causal.
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(b) To compute

y(t) =
∫ t

t−1
σu(σ) sin(σ)dσ,

one way is to discriminate the cases

∫ t

t−1
σu(σ) sin(σ)dσ =





0 for t < 0,∫ t
0 σ sin(σ)dσ for 0 ≤ t < 1,∫ t
t−1 σ sin(σ)dσ for 1 ≤ t.

Using integration by parts gives
∫

σ sin(σ)dσ = −σ cos(σ) +
∫

cos(σ) = −σ cos(σ) + sin(σ),

therefore the above integrals give

y(t) =





0 for t < 0,

[−σ cos(σ) + sin(σ)]t0 for 0 ≤ t < 1,

[−σ cos(σ) + sin(σ)]tt−1 for 1 ≤ t.

=





0 for t < 0,

−t cos(t) + sin(t) for 0 ≤ t < 1,

−t cos(t) + sin(t) + (t− 1) cos(t− 1)− sin(t− 1) for 1 ≤ t.

Writing it in one equation gives

y(t) = [u(t)− u(t− 1)] · [−t cos(t) + sin(t)]
+ u(t− 1)[−t cos(t) + sin(t) + (t− 1) cos(t− 1)− sin(t− 1)]

= u(t)[−t cos(t) + sin(t)]− u(t− 1)[−(t− 1) cos(t− 1) + sin(t− 1)]. (3)

Another way would be to first note (e.g. from observing the cases) the identity:

y(t) = u(t)
∫ t

0
σ sin(σ)dσ − u(t− 1)

∫ (t−1)

0
σ sin(σ)dσ.

Here the function

f(t) = u(t)
∫ t

0
σ sin(σ)dσ = u(t) [−t cos(t) + sin(t)]

(using the same integration by parts), so we have

y(t) = f(t)− f(t− 1), (4)

that gives the same answer as (3).
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Yet another way, that was actually suggested by a couple of people in the class, is to do the
integration by parts directly in the original integral. Integrating by parts twice gives:

∫
σu(σ) sin(σ)dσ = −σu(σ) cos(σ) +

∫
cos(σ)u(σ)dσ

= −σu(σ) cos(σ) + sin(σ)u(σ)−
∫

sin(σ)δ(σ)dσ

= u(σ) [−σ cos(σ) + sin(σ)] .

For the last step, note that sin(σ)δ(σ) = sin(0)δ(σ) = 0.

Now incrementing the previous function between the limits t− 1 and t gives the same answer
as (3).

(c) The best way is to first transform the function f(t) = u(t)[−t cos(t) + sin(t)]. Using the
Laplace properties we find that

F (s) =−
[
− d

ds

(
s

s2 + 1

)]
+

1
s2 + 1

=
s2 + 1− s(2s)

(s2 + 1)2
+

1
s2 + 1

=
1− s2 + s2 + 1

(s2 + 1)2

=
2

(s2 + 1)2

Now using the delay property (note f(t) already contains a step u(t)),

L[f(t− 1)] = L[u(t− 1)f(t− 1)] = e−sF (s).

Therefore from (4) we have

Y (s) = F (s)− e−sF (s) =
2(1− e−s)
(s2 + 1)2

.

The transform has poles at s = ±i. Therefore the domain of convergence is Re[s] > 0.
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