1. Consider the system constructed by the following R-C circuit;

where $R = 1 \Omega$ and C = 0.2 F. Assume $t_0 = 0$ and y(0) = 0.

- (a) (5 points) A capacitor has a voltage that is proportional to the charge, which is equal to the integral of the current. And the capacitance C, is defined as the ratio of charge q(t) on each conductor to the voltage v(t) between them: C = q(t)/v(t). Considering these relationships, write a differential equation describing the given system, where y(t) = v(t).
- (b) (10 points) What is the impulse response, $h(t; \tau)$, of this system.
- (c) (10 points) Is this system linear, time-invariant, causal? Explain your answers.
- (d) (5 points) What is the output of the system when the input is x(t) = 5tu(t)? Compute the output in the **time domain**.

Solution:

(a) The voltage-current relationship in a capacitor is as following:

$$v(t) = \frac{1}{C}q(t) = \frac{1}{C}\int_{t_0}^t i(\tau) \,\mathrm{d}\tau,$$

$$\Rightarrow i(t) = C\frac{\mathrm{d}}{\mathrm{d}t}v(t).$$

Applying Kirchhoff's voltage law,

$$Ri(t) + y(t) = x(t), \quad i(t) = C \frac{\mathrm{d}}{\mathrm{d}t} y(t).$$

Therefore, the resulting differential equation is,

$$RC\frac{\mathrm{d}}{\mathrm{d}t}y(t) + y(t) = x(t), \quad t > t_0$$

Using the given values,

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 5y(t) = 5x(t), \quad t > 0$$

(b) By multiplying both sides by e^{5t} , the differential equation can be rewritten as

$$\frac{\mathrm{d}}{\mathrm{d}t} \{ \mathrm{e}^{5t} y(t) \} = 5 \mathrm{e}^{5t} x(t)$$

Integrating both sides from 0 to t results in

$$\mathrm{e}^{5t}y(t) - \mathrm{e}^{5\cdot 0}y(0) = \int_0^t 5\mathrm{e}^{5\sigma}x(\sigma)\,\mathrm{d}\sigma$$

or

$$y(t) = 5e^{-5t} \int_0^t e^{5\sigma} x(\sigma) \,\mathrm{d}\sigma$$

The impulse response $h(t;\tau)$ is the output of the system to the input $\delta(t-\tau)$. Therefore,

$$h(t;\tau) = 5e^{-5t} \int_0^t e^{5\sigma} \delta(\sigma - \tau) \, d\sigma$$

= $5e^{-5t} \int_{-\infty}^\infty e^{5\sigma} u(\sigma) u(t - \sigma) \delta(\sigma - \tau) \, d\sigma$
= $5e^{-5(t - \tau)} u(t - \tau)$

(c) The system is linear since the output is the integration of a linear function of the input. Or, for any k_1 , k_2 and x_1 , x_2 ,

$$T[k_1x_1(t) + k_2x_2(t)] = 5e^{-5t} \int_0^t e^{5\sigma} (k_1x_1(\sigma) + k_2x_2(\sigma)) d\sigma$$

= $k_1 \cdot 5e^{-5t} \int_0^t e^{5\sigma} x_1(\sigma) d\sigma + k_2 \cdot 5e^{-5t} \int_0^t e^{5\sigma} x_2(\sigma) d\sigma$
= $k_1T[x_1(t)] + k_2[x_2(t)].$

It's time-invariant since $h(t; \tau)$ is only a function of $t - \tau$. It's also verified that $T[x(t-\tau)] = y(t-\tau)$ for any τ .

Moreover, the system is causal as y(t) depends on $x(\sigma)$ for $\sigma \leq t$.

(d)

$$y(t) = 5e^{-5t} \int_0^t e^{5\sigma} [5\sigma u(\sigma)] d\sigma$$

= $5^2 e^{-5t} \left(\left[\frac{1}{5} \sigma e^{5\sigma} \right]_{\sigma=0}^t - \int_0^t \frac{1}{5} e^{5\sigma} d\sigma \right)$
= $[5e^{-5t} t e^{5t} - (e^{5t} - 1)] u(t)$
= $[-e^{5t} + 5t + 1] u(t)$

2. (15 points) The following are inputs to a time-invariant system S_2 and the corresponding outputs:

$$\begin{aligned} x_1(t) &= \mathbf{u}(t) - \mathbf{u}(t-2) &\to y_1(t) = \mathrm{e}^{-t}\mathbf{u}(t) - \mathrm{e}^{-2t}\mathbf{u}(t-1), \\ x_2(t) &= \mathbf{u}(t) - \mathbf{u}(t-1) &\to y_2(t) = -\mathrm{e}^{-t}\mathbf{u}(t). \end{aligned}$$

Can the system said to be linear? Why?

Solution:

$$x_1(t) - x_2(t-1) = u(t) - u(t-1) = x_1(t)$$

Assume that the system is linear. As it's also time-invariant, from the prior formula, we should have

$$T[x_1(t) - x_2(t-1)] = T[x_2(t)],$$

i.e.,

$$y_1(t) - y_2(t-1) = y_2(t).$$

However, the left-hand side is

LHS =
$$e^{-t}u(t) + (e^{-(t-1)} - e^{-2t})u(t-1),$$

and the right-hand side is

$$RHS = -e^{-t}u(t),$$

which are not equal to each other, a contradiction. So the system is not linear.