UCLA — Electrical Engineering Dept. EE102: Systems and Signals — Practice Final

This exam has 6 questions, for a total of 90 points.

Closed book. Two two-sided cheat-sheets allowed. Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page. **Please, write your name and ID on the top of each loose sheet!**

Name and ID: _____

Name of person on your left:

Name of person on your right: _____

Question	Points	Score
1	10	
2	15	
3	20	
4	15	
5	15	
6	15	
Total:	90	

- 1. The output of a linear, time-invariant, causal system is $y(t) = e^{-2t} \sin(t)u(t)$ when the input is $x(t) = \delta(t) + u(t)$.
 - (a) (5 points) Find the transfer function H(s) of the system and its region of convergence.
 - (b) (5 points) Find the frequency response $\mathcal{F}[h](\omega)$ of the system. Is $\mathcal{F}[h](\omega) = H(s)|_{s=j\omega}$? Why?

2. Consider a linear, time-invariant, causal system described by

$$H(s) = \frac{s}{(s+2)^2}.$$

- (a) (5 points) Derive the impulse response function, h(t).
- (b) (10 points) Compute the output, y(t), corresponding to the input $x(t) = \cos(t)$.

3. Consider the signal, x(t), whose Fourier transform, $X(\omega) = |X(\omega)|e^{j\Theta(\omega)}$, is defined as follows:

$$|X(\omega)| = \begin{cases} 1, & -2 < \omega < -1 \text{ and } 1 < \omega < 2\\ 0, & \text{elsewhere} \end{cases} \qquad \Theta(\omega) = \begin{cases} \frac{\pi}{2}, & \omega < 0\\ -\frac{\pi}{2}, & \omega > 0 \end{cases}$$

- (a) (5 points) Write down the mathematical expression for $X(\omega)$ by using the unit step function, $u(\omega)$.
- (b) (5 points) Do you expect x(t) to be a real signal or an imaginary signal? Why? Answer without computing x(t) explicitly.
- (c) (10 points) Derive the expression for x(t). Simplify as much as you can, for example, write all complex exponentials in terms of their real and imaginary parts.

- 4. (a) (8 points) The signal y(t) is obtained by multiplying the signal x(t) of problem 3 with $c(t) = \cos(3t)$, i.e., y(t) = x(t) c(t). Compute the Fourier transform of y(t), $Y(\omega)$.
 - (b) (7 points) The signal y(t) is now passed through a linear, time-invariant system with impulse response equal to

$$h(t) = \frac{3}{\pi}\operatorname{sinc}(3t).$$

Compute the output, z(t), of this system. [Hint: It may be easier to work in the frequency domain, i.e., to first compute $Z(\omega)$.]

5. The impulse response of a linear, time-invariant system is

$$h(t) = 2 \frac{\sin(2t)}{\pi t} [\cos(6t)]^2.$$

- (a) (10 points) Find the frequency response of the system, $H(\omega)$.
- (b) (5 points) Find the output, y(t), when the input is $x(t) = 1 + \sin(2.5t) + \cos(5t)$.

6. Consider the signal x(t) periodic of period T = 2, defined as $x(t) = t^2$, -1 < t < 1. The Fourier sine-cosine series expansion of x(t) is given by

$$x(t) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(n\pi t).$$

- (a) (10 points) Using Parseval's theorem, calculate $\sum_{n=1}^{\infty} n^{-4}$.
- (b) (5 points) Write the expression for the mean square error ϵ_1^2 when x(t) is approximated by terms up to the first harmonic.