- 1. Consider the following systems.
	- (a) S_1 : $y(t) = \sin(x(t))$. Is it linear? Time-invariant? Causal? Explain. Nonlinear: $sin(k_1x_1(t) + k_2x_2(t)) \neq k_1 sin(x_1(t)) + k_2 sin(x_2(t))$. Time-invariant: $\sin(x(t-\tau)) = y(t-\tau)$. Causal and memoryless: $y(t_0)$ depends only on $x(t_0)$.
	- (b) S_2 : $y(t) = \int_{t-2}^{t} (t-\sigma)x(\sigma)d\sigma$. Is it linear? Time-invariant? Causal? Explain. O₂. $y(t) - J_{t-2}(t - \sigma)x(\sigma)d\sigma$. Is it inteat: The invariant: Causar: Explain.
One can write $y(t) = \int_{-\infty}^{\infty} [U(\sigma - t + 2)U(t - \sigma)](t - \sigma)x(\sigma)d\sigma = x(t) * h(t)$, with $h(t) = [U(-t + 2)U(t)]t$. Note that $h(t)$ can be also written as $h(t) =$ $[U(t)-U(t-2)]t$. The system is then a linear, time-invariant system with impulse response $h(t)$. Because $h(t) = 0, t < 0$, the system is also causal.
	- (c) Consider now the **time-invariant** system S_3 , and assume that the responses to the two signals $x_1(t) = U(t)$ and $x_2(t) = U(t) - U(t-2)$ are respectively $y_1(t) = U(t-1)$ and $y_2(t) = U(t-1) - U(t-2)$. Is S_3 linear? If the system were linear, the output corresponding to $x_3(t) = x_1(t) - x_2(t)$ would be equal to $y_3(t) = y_1(t) - y_2(t)$. We have that $x_3(t) = U(t-2)$ and $y_3(t) = U(t-2)$. This contradicts the fact that the system is time-invariant: $x_3(t)$ is simply equal to $x_1(t-2)$, therefore the corresponding output should be equal to $y_1(t-2) = U(t-3)$. [If you are curious to know what the input-output relation for this system is, here it is: $y(t) = x(t)x(t-1)$.]
- 2. Consider the system S_2 from the previous question.
	- (a) Compute its impulse response, $h(t)$. See above: $h(t) = t[U(t) - U(t-2)].$
	- (b) Compute the output of the system when $x(t) = U(t-1)$. Use the convolution integral. Because the system is time-invariant, one can compute the output corresponding to $\bar{x}(t) = x(t+1) = U(t)$ and then shift it to the right by 1. $\bar{y}(t) = \int_{t-2}^{t} (t-\sigma)\bar{x}(\sigma)d\sigma = \int_{t-2}^{t} (t-\sigma)U(\sigma)d\sigma$. If $t < 0$, $\bar{y}(t) = 0$. If $\sum_{t=2}^{t} (t-\sigma) U(\sigma) d\sigma$. If $t < 0$, $\bar{y}(t) = 0$. If $0 < t < 2$, then $\bar{y}(t) = \int_0^t (t - \sigma) d\sigma = [t\sigma - \sigma^2/2]_{\sigma=0}^t = t^2/2$. If $t > 2$, then $\bar{y}(t) = \int_{t-2}^{t} (t-\sigma)d\sigma = [t\sigma - \sigma^2/2]_{\sigma=t-2}^{t} = 2$. The desired output $y(t)$ is equal to $y(t) = \bar{y}(t-1).$
- 3. Consider now the system S_4 , described by the following input-output relation:

$$
\mathcal{S}_4: y(t) = t^2 x(t).
$$

(a) Suppose that the output of system S_2 above is sent as input to system S_4 ,

$$
\stackrel{a(t)}{\rightarrow} \boxed{\mathcal{S}_2} \stackrel{b(t)}{\rightarrow} \boxed{\mathcal{S}_4} \stackrel{c(t)}{\rightarrow}.
$$

What is the output of the overall system when $a(t) = \delta(t-1)$? The output of S_2 is equal to $b(t) = h(t-1) = (t-1)[U(t-1)-U(t-3)]$, because the system is linear, time-invariant. Therefore $c(t) = t^2(t-1)[U(t-1)-U(t-3)]$.

Page 1 of 2 Please go to next page...

(b) The two systems are now switched:

$$
\stackrel{a(t)}{\rightarrow} \boxed{\mathcal{S}_4} \stackrel{b(t)}{\rightarrow} \boxed{\mathcal{S}_2} \stackrel{c(t)}{\rightarrow}.
$$

What is the output of this combined system when $a(t) = \delta(t-1)$? The output of S_4 is now equal to $b(t) = t^2 \delta(t-1) = \delta(t-1)$. Therefore $c(t) = h(t-1) =$ $(t-1)[U(t-1)-U(t-3)].$

- 4. Compute the Laplace transform of the following signals:
	- (a) $f_1(t) = e^{-t} \cos(t-1)U(t-1);$ Because $f_1(t) = e^{-1}g(t-1)$, where $g(t) = e^{-t}\cos(t)U(t)$, then $F_1(s) = e^{-1}e^{-s}G(s)$ $e^{-(s+1)}(s+1)/[(s+1)^2+1]$, with a pole in $s=-1$, therefore the region of convergence is given by $\Re\{s\} > -1$.
	- (b) $f_2(t) = \int_0^t (t \sigma) e^{-\sigma} d\sigma;$ $J_2(t) = \int_0^t (t - \sigma)e^{-\sigma} d\sigma;$
Re-write $f_2(t)$ as $f_2(t) = \int_{-\infty}^{\infty} [(t - \sigma)U(t - \sigma)][U(\sigma)e^{-\sigma}] d\sigma = [tU(t)] * [U(t)e^{-t}],$ then $F_2(s) = (1/s^2)[1/(s+1)] = 1/[s^2(s+1)]$, with poles in $s = 0$ and $s = -1$, therefore the ROC is $\Re\{s\} > 0$.
	- (c) $f_3(t) = \int_0^t \sin(\sigma) \cos(\sigma) d\sigma$.

	Re-write $f_3(t)$ as $f_3(t) = \int_{-\infty}^{\infty} [(1/2) \sin(2\sigma) U(\sigma)] [U(t-\sigma)] d\sigma = [(1/2)U(t) \sin(2t)]*$ $U(t)$, then $F_3(s) = (1/2)[2/(s^2+4)](1/s) = 1/[s(s^2+4)]$ with poles in $s = 0$, $s = \pm 2i$, therefore the ROC is $\Re\{s\} > 0$.