This exam has 5 questions, for a total of 75 points.

Closed book. One two-sided cheat-sheet allowed. Answer the questions in the spaces provided on the question sheets. If you run out of room for an answer, continue on the back of the page. **Please, write your name and ID on the top of each loose sheet!**

Name and ID: _____

Name of person on your left:

Name of person on your right:

Question	Points	Score
1	10	
2	26	
3	15	
4	8	
5	16	
Total:	75	

Multiple-choice questions – Check all the answers that apply.

1. (a) (1 point) Consider the periodic signal x(t), whose period is drawn below:

Are the Fourier coefficients, X_n , |n| > 0

- \bigcirc purely real?
- purely imaginary?
- \bigcirc neither purely real nor purely imaginary?
- (b) (1 point) What is the region of convergence of $F(s) = \mathcal{L}[f](s)$, where

$$f(t) = e^{-t^2} \operatorname{rect}(t-1).$$

 $\bigcirc \operatorname{Re}(s) > 0$ $\bigcirc \operatorname{Re}(s) > -1$ $\bigcirc \mathbb{C}$

(c) (4 points) Consider the LTI system with impulse response

$$h(t) = e^{-2t} \sin(t + \pi/3) u(t).$$

Check the statements that are true:

$$\bigcirc \mathcal{F}[x](\omega) = \mathcal{L}[x](j\omega)$$

- \bigcirc The system is BIBO stable
- \bigcirc The ROC is given by $\operatorname{Re}(s) > -1$
- \bigcirc The Fourier transform of h(t) does not exist

(d) (3 points) Consider the amplitude and phase spectra of a periodic signal below:

What information can you deduce about the time-domain signal f(t), simply by looking at the spectra?

- \bigcirc The signal is real
- \bigcirc The signal is odd-symmetric

 $\bigcirc \int_{-T/2}^{T/2} f(t) dt = 0$, where T is the signal's period

(e) (1 point) What is the Nyquist rate for signal $x(t) = \operatorname{sinc}(t) + \cos(2t)$?

- $\bigcirc \Omega_{\rm s} = 4 \, {\rm rad/s}$
- $\bigcirc \ \varOmega_{\rm s} = 2 \, {\rm rad/s}$
- $\bigcirc \ \Omega_{\rm s} = 1 \, {\rm rad/s}$

2. Consider the periodic signal x(t), whose period is drawn below:

- (a) (2 points) What is the period, T, and what is the fundamental frequency, ω_0 in radians per second?
- (b) (5 points) Compute the Fourier series coefficients, X_n , *n* integer. Make sure you compute them correctly, as the following questions will depend on them.
- (c) (4 points) Plot the amplitude and phase spectra of X_n .
- (d) (5 points) Write the expression of $\hat{x}_1(t)$, the approximation of x(t) up to the first harmonic.
- (e) (5 points) What is the mean squared error of the approximation up to the first harmonic, ϵ_1^2 ? Compute ϵ_1^2 by using the approximation $\pi \approx 3$.
- (f) (5 points) If the signal x(t) is the input of an LTIC system with impulse response $h_1(t)$, whose Fourier transform is given in the figure below, what is the corresponding output? You should be able to answer without performing any computations. (Hint: note that x(t) has a line spectrum.)

- 3. The output of a linear, time-invariant system is $y(t) = e^{-2t} \sin(t) u(t)$ when the input is $x(t) = \delta(t) + u(t)$.
 - (a) (5 points) Find the transfer function $H(s) = \mathcal{L}[h](s)$ of the system and its region of convergence.
 - (b) (5 points) Find the frequency response $\mathcal{F}[h](\omega)$ of the system (you do not need to simplify). Is $\mathcal{F}[h](\omega) = H(s)|_{s=j\omega}$? Explain.
 - (c) (5 points) The input $x_1(t) = 5 + \cos(t)$ is now applied to the system. Compute the corresponding output, $y_1(t)$.

4. Consider an LTIC system with transfer function (Laplace transform of the impulse response) H(s) given by:

$$H(s) = \frac{e^{-s}}{(s+1)(s^2+2s+2)}.$$

- (a) (3 points) Is the system BIBO stable? Explain.
- (b) (5 points) Compute the impulse response, h(t).

5. Let y(t) be the output when x(t) of problem 2 (a periodic signal whose main period is shown below) is applied to a system with transfer function H(s) as in problem 4.

- (a) (2 points) Is the output y(t) periodic? If so, what is its period?
- (b) (5 points) Compute the Fourier series coefficients of the output, Y_n . You do not need to simplify.
- (c) (5 points) Compute the magnitude $|Y_n|$ and the angle $\measuredangle Y_n$ of the output signal's Fourier series coefficients.
- (d) (4 points) From $|Y_n|$ and $\measuredangle Y_n$ can you conclude that the output is real? If so, explain.

f(t)	$F(s) = \mathcal{L}[f](s) = \int_{0-}^{\infty} e^{-st} f(t) dt$
$\delta(t-a)$	$e^{-as}, ROC = \mathbb{C}$
u(t)	$\frac{1}{s}, \operatorname{Re}\{s\} > 0$
$t^n \mathbf{u}(t), n \ge 0$ integer	$\frac{n!}{s^{n+1}}, \operatorname{Re}\{s\} > 0$
$e^{at}u(t)$	$\frac{1}{s-a}, \operatorname{Re}\{s\} > \operatorname{Re}\{a\}$
$t e^{at} u(t)$	$\frac{1}{(s-a)^2}, \operatorname{Re}\{s\} > \operatorname{Re}\{a\}$
$\cos(\omega_0 t)\mathbf{u}(t)$	$\frac{s}{s^2 + \omega_0^2}, \operatorname{Re}\{s\} > 0$
$\sin(\omega_0 t) \mathbf{u}(t)$	$\frac{\omega_0}{s^2 + \omega_0^2}, \operatorname{Re}\{s\} > 0$
$\cosh(kt)\mathbf{u}(t)$	$\frac{s}{s^2 - k^2}, \operatorname{Re}\{s\} > k $
$\sinh(kt)\mathbf{u}(t)$	$\frac{k}{s^2 - k^2}, \operatorname{Re}\{s\} > k $
u(t-a)	$\frac{\mathrm{e}^{-as}}{s}, \operatorname{Re}\{s\} > 0$
$\frac{\mathrm{d}}{\mathrm{d}t}f(t)$	sF(s) - f(0-)
$\frac{\mathrm{d}^n}{\mathrm{d}t^n}f(t)$	$s^{n}F(s) - s^{n-1}f(0-) - s^{n-2}f'(0-) - \cdots$
	$\cdots - s f^{(n-2)}(0-) - f^{(n-1)}(0-)$
$\int_0^t f(\tau) \mathrm{d}\tau$	$\frac{1}{s}F(s)$
$e^{at}f(t)$	F(s-a)
$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau) \mathrm{d}\tau$	F(s)G(s)
$t^n f(t), \ n = 1, 2, \dots$	$(-1)^n \frac{\mathrm{d}^n}{\mathrm{d}s^n} F(s)$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) \mathrm{d}\sigma$
$\mathbf{u}(t-a)f(t-a), \ a \ge 0$	$e^{-as}F(s)$
f(at), a > 0	$\frac{1}{a}F\left(\frac{s}{a}\right)$

f(t)	$F(\omega) = \int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{j}\omega t} \mathrm{d}t$
$e^{-at}\mathbf{u}(t), a > 0$	$\frac{1}{a+j\omega}$
$e^{at}\mathbf{u}(-t), a > 0$	$\frac{1}{a-j\omega}$
$e^{-a t }, a > 0$	$\frac{2a}{a^2 + \omega^2}$
$t e^{-at} u(t), a > 0$	$\frac{1}{(a+j\omega)^2}$
$t^n e^{-at} \mathbf{u}(t), \ a > 0$	$\frac{n!}{(a+\mathrm{j}\omega)^{n+1}}$
$\delta(t)$	1
1	$2\pi\delta(\omega)$
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
$\cos(\omega_0 t)$	$\pi[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]$
$\sin(\omega_0 t)$	$j\pi[\delta(\omega+\omega_0)-\delta(\omega-\omega_0)]$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$sgn(t) = \begin{cases} 1, & t > 0\\ -1, & t < 0 \end{cases}$	$\frac{2}{j\omega}$
$e^{-at}\cos(\omega_0 t)u(t), a > 0$	$\frac{a + j\omega}{(a + j\omega)^2 + \omega_0^2}$
$e^{-at}\sin(\omega_0 t)\mathbf{u}(t), a > 0$	$\frac{\omega_0}{(a+\mathrm{j}\omega)^2+\omega_0^2}$
$\cos(\omega_0 t)\mathbf{u}(t)$	$\frac{\pi}{2}[\delta(\omega+\omega_0)+\delta(\omega-\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$
$\operatorname{rect}\left(\frac{t}{T}\right) = \begin{cases} 1, & -\frac{T}{2} < t < \frac{T}{2} \\ 0, & \text{otherwise} \end{cases}$	$T\operatorname{sinc}\left(\frac{T\omega}{2}\right)$
sinc $\left(\frac{t}{T}\right) = \frac{\sin(t/T)}{t/T}$	$\pi T \operatorname{rect}\left(\frac{T\omega}{2}\right)$
$\operatorname{tri}\left(\frac{t}{T}\right) = \begin{cases} 1 - t /T, & -T < t < T\\ 0, & \text{otherwise} \end{cases}$	$T\left[\operatorname{sinc}\left(\frac{T\omega}{2}\right)\right]^2$
$\left[\operatorname{sinc}\left(\frac{t}{T}\right)\right]^2$	$\pi T \operatorname{tri}\left(\frac{T\omega}{2}\right)$

$af_1(t) + bf_2(t)$	$aF_1(\omega) + bF_2(\omega)$
$f(t-t_0)$	$\mathrm{e}^{-\mathrm{j}\omega t_0}F(\omega)$
$e^{j\omega_0 t} f(t)$	$F(\omega - \omega_0)$
f(-t)	$F(-\omega)$
f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
$(f_1 * f_2)(t)$	$F_1(\omega)F_2(\omega)$
$f_1(t)f_2(t)$	$\frac{1}{2\pi}(F_1 * F_2)(\omega)$
$\frac{\mathrm{d}}{\mathrm{d}t}f(t)$	$\mathrm{j}\omega F(\omega)$
$\int_{-\infty}^{t} f(t) \mathrm{d}t$	$\frac{1}{\mathrm{j}\omega}F(\omega) + \pi F(0)\delta(\omega)$
tf(t)	$j\frac{d}{d\omega}F(\omega)$
f(t) is real	$F(\omega) = F^{\star}(-\omega)$
f(t) is real and even	$F(\omega)$ is real and even
f(t) is real and odd	$F(\omega)$ is purely imaginary and odd
F(t)	$2\pi f(-\omega)$

Parseval's Theorem:

$$\int_{-\infty}^{\infty} f(t)g^*(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega)G^*(\omega) d\omega.$$
$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |F(\omega)|^2 d\omega.$$

Product to Sum	Sum to Product
$2\sin(\alpha)\sin(\beta) = \cos(\alpha - \beta) - \cos(\alpha + \beta)$	$\sin(\alpha) + \sin(\beta) = 2\sin\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$
$2\cos(\alpha)\cos(\beta) = \cos(\alpha - \beta) + \cos(\alpha + \beta)$	$\sin(\alpha) - \sin(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$
$2\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta) + \sin(\alpha - \beta)$	$\cos(\alpha) + \cos(\beta) = 2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$
$2\cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) - \sin(\alpha - \beta)$	$\cos(\alpha) - \cos(\beta) = -2\sin\left(\frac{\alpha+\beta}{2}\right)\sin\left(\frac{\alpha-\beta}{2}\right)$
Sum/Difference	Pythagorean Identity
$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	$\sin^2(\alpha) + \cos^2(\alpha) = 1$
$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	
$\tan(\alpha \pm \beta) = \frac{\tan(\alpha) \pm \tan(\beta)}{1 \mp \tan(\alpha) \tan(\beta)}$	
Even/Odd	Periodic Identities
$\sin(-\alpha) = -\sin(\alpha)$	$\sin(\alpha + 2\pi n) = \sin(\alpha)$
$\cos(-\alpha) = \cos(\alpha)$	$\cos(\alpha + 2\pi n) = \cos(\alpha)$
$\tan(-\alpha) = -\tan(\alpha)$	$\tan(\alpha + \pi n) = \tan(\alpha)$
Double-Angle Identities	Half-Angle Identities
$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$	$\sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{2}}$
$\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$	$\cos\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1+\cos(\alpha)}{2}}$
$\tan(2\alpha) = \frac{2\tan(\alpha)}{1-\tan^2(\alpha)}$	$\tan\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1-\cos(\alpha)}{1+\cos(\alpha)}}$
Laws of Sines, Cosines, and Tangents	Mollweide's Formula
$\sin(\alpha)/a = \sin(\beta)/b = \sin(\gamma)/c$	$(a+b)/c = \cos\left((\alpha-\beta)/2\right)/\sin\left(\gamma/2\right)$
$\begin{vmatrix} a^2 = b^2 + c^2 - 2bc\cos(\alpha) \\ \frac{a-b}{a+b} = \frac{\tan\left(\frac{\alpha-\beta}{2}\right)}{\tan\left(\frac{\alpha+\beta}{2}\right)} \end{vmatrix}$	$\begin{array}{c} c \\ \hline \alpha \\ \hline b \end{array}$