- 1. The output of a linear, time-invariant, causal system is $y(t) = e^{-2t} \sin(t) U(t)$ when the input is $x(t) = \delta(t) + U(t)$.
	- (a) Find the transfer function $H(s)$ of the system. $Y(s) = 1/[(s+2)^2 + 1], X(s) = 1 + 1/s, H(s) = Y(s)/X(s) = \frac{s}{[(s+2)^2+1](s+1)},$ with $\text{ROC} = \Re\{s\} > -1.$
	- (b) Find the frequency response $H(i\omega)$ of the system. Is $H(i\omega) = H(s)|_{s=i\omega}$? Why? The ROC of $H(s)$ includes the imaginary axis, therefore $H(i\omega) = H(s)|_{s=i\omega}$ $\frac{i\omega}{[(i\omega+2)^2+1](i\omega+1)}$
	- (c) The input $x_1(t) = 5 + \cos(t) + e^{-t}U(t)$ is now applied to the system. Compute the corresponding output, $y_1(t)$. We can rewrite $x_1(t) = x_{11}(t) + x_{12}(t) + x_{13}(t)$, where $x_{11}(t) = 5$, $x_{12}(t) = \cos(t)$, $x_{13}(t) = e^{-t}U(t)$. The output is the equal to $y_1(t) = y_{11}(t) + y_{12}(t) + y_{13}(t)$. For $x_{11}(t)$ and $x_{12}(t)$ we can use the fact that the output corresponding to $\cos(\omega_0 t)$ is equal to $|H(i\omega_0)|\cos(\omega_0 t + \theta(\omega_0))$, where $H(i\omega_0) = |H(i\omega_0)|e^{i\theta(\omega_0)}$. We use this expression with $\omega_0 = 0$ for $x_{11}(t)$ and $\omega_0 = 1$ for $x_{12}(t)$, which yield $y_{11}(t) = 0$, $y_{12}(t) = \frac{1}{8}\cos(t)$ $(H(0) = 0, H(i) = 1/8)$. For $y_{13}(t)$ we can use the Laplace transform: $Y_{13}(s) = H(s)[1/(s+1)] = \frac{s}{[(s+2)^2+1](s+1)^2}$. We have $Y_{13}(s) = \frac{A}{s+1} +$ $\frac{B}{(s+1)^2} + \frac{C(s+2)+D}{(s+2)^2+1}$. We obtain $A = 1$, $B = -1/2$, $C = -1$, $D = -1/2$, and $y_{13}(t) = U(t)[e^{-t} - 0.5te^{-t} - e^{-2t}\cos(t) - 0.5e^{-2t}\sin(t)].$
- 2. A linear system S_1 is described by the following input-output relation

$$
y(t) = \int_{-\infty}^{t} 2e^{-(t-1)}\sigma x(\sigma)d\sigma, \quad -\infty < t < \infty,
$$

where $x(t)$ and $y(t)$ are input and output, respectively.

(a) Compute the impulse response $h_1(t, \tau)$ of the system S_1 . Is S_1 time-invariant? Is it causal? **Briefly** explain your answers. To obtain $h_1(t, \tau)$, we replace $x(t)$ with $\delta(t - \tau)$, which yields

$$
h_1(t,\tau) = \int_{-\infty}^{\infty} 2e^{-(t-1)}\sigma \delta(\sigma-\tau)U(t-\sigma)d\sigma = 2e^{-(t-1)}\tau U(t-\tau).
$$

Because $h_1(t, \tau)$ is not solely function of $(t - \tau)$, the system is not TI. Because $h_1(t, \tau) = 0$ for $t < \tau$, the system is causal.

(b) Find the output of S_1 when the input is $U(t-1)$. We have

$$
y(t) = 2e^{-(t-1)} \int_{-\infty}^{t} \sigma U(\sigma - 1) d\sigma = 2e^{-(t-1)} \int_{1}^{t} \sigma d\sigma = e^{-(t-1)} (t^2 - 1) U(t - 1).
$$

- (c) The output signal obtained in part (b) is now applied as an input to a linear, time-invariant, causal system S_2 . The corresponding output is $z(t) = 2(t 1)^{2}e^{-(t-1)}U(t-1)$. Compute the impulse response $h_{2}(t)$ of system S_{2} . By taking the Laplace transform of $y_1(t) = y(t+1) = e^{-t}(t^2 + 2t)U(t)$ and $z_1(t) = z(t+1) = 2e^{-t}t^2U(t)$, we have that $H_2(s) = Z_1(s)/Y_1(s) = [4/(s+1)]$ $1)^{3}$ $\left[\frac{2}{(s+1)^{3} + 2}{(s+1)^{2}}\right] = \frac{2}{(s+2)}$, which yields $h_2(t) = 2e^{-2t}U(t)$.
- 3. The impulse response of a linear, time-invariant system is

$$
h(t) = 2\frac{\sin(2t)}{\pi t} [\cos(6t)]^2.
$$

- (a) Find the frequency response of the system, $H(i\omega)$. We can rewrite $h(t) = (2/\pi) \operatorname{sinc}(2t) (1+\cos(12t))$, which yields $H(i\omega) = \frac{1}{2}\operatorname{rect}((\omega +$ $12)/4$ + $rect(\omega/4) + \frac{1}{2}rect((\omega - 12)/4)$.
- (b) Find the output, $y(t)$, when the input is $x(t) = 1 + \sin(2.5t) + \cos(5t)$. The signal $x(t)$ has frequency components at frequencies $-5, -2.5, 0, 2.5$ and 5, but only the component at zero frequency goes through the system, with amplitude given by $H(0) = 1$. The output is $y(t) = 1$.
- 4. Consider the signal $x(t)$ periodic of period $T = 2$, defined as $x(t) = t^2$, $-1 < t < 1$. The Fourier sine-cosine series expansion of $x(t)$ is given by

$$
x(t) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(n\pi t).
$$

- (a) Verify Parseval's theorem for this series, given that $\sum_{n=1}^{\infty} n^{-4} = \pi^4/90$. 1 $\frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \frac{1}{2}$ $\frac{1}{2} \int_{-1}^{1} t^4 dt = 1/5$. This should be equal to $a_0^2 + \frac{1}{2}$ $\frac{1}{2}\sum_{n=1}^{\infty} a_n^2 =$ $rac{1}{9} + \frac{8}{\pi^4}$ $\frac{8}{\pi^4} \sum_{n=1}^{\infty} n^{-4} = \frac{1}{9} + \frac{8}{\pi^4}$ $\overline{\pi^4}$ $\frac{\pi^4}{90} = \frac{18}{90} = 1/5.$
- (b) Write the expression for the mean square error ϵ_1^2 when $x(t)$ is approximated by terms up to the first harmonic. $\epsilon_1^2 = ||x(t)||_{\text{RMS}}^2 - a_0^2 - \frac{1}{2}$ $\frac{1}{2}a_1^2 = 1/5 - 1/9 - 8/\pi^4 = 4/45 - 8/\pi^4.$
- 5. Consider the following simultaneous differential equations:

$$
\frac{dy_1(t)}{dt} + 3y_1(t) + 2.5y_2(t) = x(t)
$$

-2y₁(t) + 2 $\frac{dy_2(t)}{dt}$ + 4y₂(t) = 0.

(a) Using the Laplace transform, determine the transfer functions relating outputs $y_1(t)$ and $y_2(t)$ to the input $x(t)$ (i.e., $H_1(s) = Y_1(s)/X(s)$ and $H_2(s) =$

 $Y_2(s)/X(s)$.

Taking the Laplace transform of both equation, we obtain:

$$
(s+3)Y_1(s) + 2.5Y_2(s) = X(s)
$$

-2Y₁(s) + 2(s+2)Y₂(s) = 0,

from which we have that $Y_1(s) = (s+2)Y_2(s)$ and $Y_2(s)((s+2)(s+3)+2.5) = X(s)$. We then have that $H_2(s) = 1/[(s+2)(s+3) + 2.5]$ and $H_1(s) = (s+2)/[(s+1)(s+2)(s+3) + 2.5]$ $2)(s + 3) + 2.5$.

(b) Solve for $y_1(t)$ using the Laplace transform, assuming all initial conditions to be zero and the input $x(t) = U(t)$. $Y_1(s) = H_1(s)X(s) = (s+2)/[s(s^2+5s+8.5)] = A/s + (B(s+5/2) + 3C/2)/[(s+5/2) + 3C/2]$ $(5/2)^2 + 9/4$. We find that $A = 4/17$, $B = -4/17$ and $C = -20/51$, and $y_1(t) =$ $U(t)[A + Be^{-5t/2}\cos(3t/2) + Ce^{-5t/2}\sin(3t/2)].$