
UCLA Electrical Engineering Dept.
EE102: Systems and Signals

Final Solutions

1. Consider a linear system with impulse response h(t) = e−t(cos(t)− sin(t))U(t).

(a) Find the transfer function H(s) of the system.
From the tables,

H(s) =
s + 1

(s + 1)2 + 1
− 1

(s + 1)2 + 1
=

s

(s + 1)2 + 1
.

(b) Compute the input x(t) that generates the output y(t) = e−t cos(t− 1)U(t− 1).
Because y(t) = e−1e(t−1) cos(t − 1)U(t − 1), Y (s) = e−1e−st s+1

(s+1)2+1
. From the

relation Y (s) = H(s)X(s), we have that

X(s) = e−1e−s s + 1

s
= e−1e−s

(
1 +

1

s

)
.

By taking the inverse Laplace transform, we have that x(t) = e−1(δ(t−1)+U(t−
1)).

(c) Find the frequency response H(iω) of the system. Is H(iω) = H(s)|s=iω?
The poles of H(s) are to the left of the imaginary axis, and h(t) = 0, t < 0,
therefore H(iω) = H(s)|s=iω, and

H(iω) =
iω

(1 + iω)2 + 1
=

iω

(2− ω2) + i2ω
.

(d) What are the expressions for |H(iω)| and θ(ω), where H(iω) = |H(iω)|eiθ(ω)?
Compute |H(i

√
2)| and θ(

√
2).

|H(iω)| = ω√
(2− ω2)2 + 4ω2

=
w√

w4 + 4
,

θ(ω) =





π
2
− tan−1

(
2|ω|

ω2−2

)
, ω < −√2

0, ω = −√2

−π
2

+ tan−1
(

2|ω|
2−ω2

)
, −√2 < ω < 0

0, ω = 0
π
2
− tan−1

(
2ω

2−ω2

)
, 0 < ω <

√
2

0, ω =
√

2

−π
2

+ tan−1
(

2ω
ω2−2

)
,

√
2 < ω

For ω =
√

2, we have

|H(i
√

2)| = 1

2
, θ(

√
2) = ∠ i

√
2

i2
√

2
= 0.
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(e) Is it true that for this system the output to the input x1(t) = cos(ω0t) is given by
y1(t) = <{eiω0tH(iω0)}?
In general, the output to x1(t) = cos(ω0t) = 1

2
e−iω0t + 1

2
eiω0t is equal to y1(t) =

1
2
H(−iω0)e

−iω0t + 1
2
H(iω0)e

iω0t. In our case,

H(−iω) = H(iω),

so we have that y1(t) = 2<{1
2
H(iω0)e

iω0t} = <{H(iω0)e
iω0t}.

(f) The input x2(t) = 100+cos(2t) is now applied to the system. What is the average
(DC) value of the output? The average DC component of the output, i.e., the
0th Fourier coefficient of the output, is given by 100H(i0) = 0.

(g) For the same input x2(t) of the previous question, what is the mean square error
of the output when it is approximated up to the third harmonic?
The signal x2(t) has a non-zero DC plus one harmonic. Therefore the output will
have a DC (actually equal to zero, from the previous question) and one harmonic,
at the same frequency, 2 rad/s. If we approximate the output up to the third
harmonic, the mean square error will be zero.

(h) What is the output y3(t) when the input is x3(t) = cos(
√

2t) + U(t).
From a previous question, the output to x31(t) = cos(

√
2t) is equal to y31(t) =

<{H(i
√

2)ei
√

2} = 1
2
cos(

√
2t). The output to x32(t) = U(t) can be obtained by

inverse Laplace transforming

1

s
H(s) =

1

(s + 1)2 + 1
,

which yields y32(t) = U(t)e−t sin(t). The complete output is y3(t) = y31(t) +
y32(t) = 1

2
cos(

√
2t) + U(t)e−t sin(t).

2. Consider the two linear, time-invariant systems whose frequency functions are given
by:

H1(iω) = F{h1(t)} = e−iω/2 rect
( ω

2π

)
,

H2(iω) = F{h2(t)} = −i sgn(ω) rect
( ω

2π

)
,

where rect(ω/ω0) = U(ω + ω0/2)− U(ω − ω0/2), and sgn(ω) = 2U(ω)− 1.
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(a) Sketch the amplitude and phase spectra of H1(iω) and H2(iω).

|H1(iω)| =
{

1, −π < ω < π

0, elsewhere
, θ1(ω) =

{
−ω/2, −π < ω < π

undefined, or 0, elsewhere

|H2(iω)| = |H1(iω)|, θ2(ω) =





π/2, −π < ω < 0

−π/2, 0 < ω < π

undefined or 0, elsewhere

(b) Compute h1(t) and h2(t). From the tables, h1(t) = sinc(π(t−1/2)). As for h2(t),

h2(t) =
i

2π

∫ 0

−π

eiωtdω− i

2π

∫ π

0

eiωtdω =
1

2πt
(1−e−iπt)− 1

2πt
(eiπt−1) =

1

πt
(1−cos(πt)).

Note that h2(0) = 0.

(c) Compute the output y(t) of the cascade

x(t) → H1(iω) → H2(iω) → y(t)

when the input is x(t) = cos(πt/2) + 10 sin(2πt).
Note that H12(i2π) = 0, so y(t) = <{H12(iπ/2)eiπt/2} = <{e−iπ/4e−iπ/2eiπt/2} =
cos(πt/2− 3π/4).

3. (Poisson summation formula.) Consider the generic function f(t), with Fourier trans-
form F (iω). Define the function

g(θ) =
∞∑

n=−∞
f

(
θ

2π
+ n

)
.

(a) Show that g(θ) is a periodic function and find its period, T , and ω0 = 2π/T .
By the definition, g(θ + 2π) =

∑∞
n=−∞ f(θ/(2π) + 1 + n) = g(θ), by a change of

indices m = n + 1. Therefore T = 2π and ω0 = 1.

(b) Write g(θ) as g(θ) =
∑∞

n=−∞ αneinω0θ, and compute the Fourier series coefficients
αn. [Hint: you can exchange integral and summation.]
By the definition of Fourier series coefficients,

αn =
1

2π

∫ π

−π

g(θ)e−inθdθ =
1

2π

∞∑
m=−∞

∫ π

−π

f

(
θ

2π
+ m

)
e−inθdθ

=
∞∑

m=−∞

∫ 1/2+m

−1/2+m

f(φ)e−i2πnφdφ =

∫ ∞

−∞
f(φ)e−i2πnφdφ = F (i2πn).
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(c) By using the results above, prove Poisson’s summation formula,

∞∑
n=−∞

f(n) =
∞∑

n=−∞
F (i2πn).

[Hint: consider g(0).]
By definition, g(0) =

∑∞
n=−∞ f(n). By the Fourier series expansion, we have that

g(θ) =
∑∞

n=−∞ F (i2πn)einθ, which yields g(0) =
∑∞

n=−∞ F (i2πn).
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